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Abstract: In this paper, the controller design for self–sensing magnetic bearings is considered using a linear time
periodic (LTP) framework. The time periodicity comes from a deliberate bias flux excitation signal allowing to
improve the plant properties. Design trade–offs using periodic controllers are investigated. Three design objectives
are considered: 1) low sensitivity norm to ensure good robustness, 2) low controller gain to attenuate current
measurement noise and to avoid voltage saturation, and 3) low mechanical compliance against external perturbation
forces to ensure high bearing stiffness. Different LTP H∞ controllers are designed using lifting techniques and linear
matrix inequalities (LMI). The resulting controllers are validated using closed–loop simulations with the nonlinear
plant.
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Introduction

Self–sensing permits active magnetic bearings to dispense with dedicated position sensors and,
instead, reconstruct rotor position information from the voltage and current signals of the
actuator coils. Thus, the hardware amount in the machine environment and the amount of
cabling can be reduced, which potentially increases hardware reliability.
But all experts in magnetic bearings agree that self–sensing is inherently difficult, and may
potentially suffer from poor performance and/or poor robustness. The research activities in
self–sensing were boosted with the announcement of the first commercial self–sensing magnetic
bearing for turbomolecular pumps [1] and with the publication of [2], [3] opening new research
directions in self–sensing. In [2] the achievable robustness of self–sensing is analyzed in a linear
periodic (LTP) framework. It is concluded that the achievable robustness dramatically improves
by exciting the system with a periodic flux signal (dither) and by utilizing linear time periodic
controllers. The cur-rent paper continues and extends the research direction of [2] and [4]. This
paper has two objectives:
 to analyze the achievable performance and robustness in the case of low dither frequency.

This is important to avoid the sensitivity deteriorating effects of eddy currents, and to be
more independent from parasitic capacitance (e.g. long bearing cables). Dither frequencies
in the range of 4... 20 times higher than the closed–loop bandwidth are considered.
Synchronous demodulation allows to build a special case of periodic controllers, but they
typically need a much higher gap between the bandwidth and the dither frequency.

 to analyze and compare in simulation the robustness and performance of several linear
peri-odic and nonlinear estimator and control strategies for self–sensing magnetic bearings.
Multi–objective design trade–offs between robustness, noise attenuation and bearing
stiffness are investigated.
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2 Modelling

2.1 Standard Nonlinear Model

The following simplification hypotheses are assumed throughout this chapter: eddy currents, leak-
age and fringing effects are neglected, the magnetic material is assumed to be linear (no saturation,
no hysteresis), and the flux density is assumed to be uniformly distributed throughout the magnet
core and air gap. The modelling used in this paper is standardand corresponds to [2]. Ampère’s law
gives the following relation between the magnetic fluxesΦi in each magnet and the coil currentsIi:

Φ1 =
µ0 Ag N

2 (g0 + xg)
I1 , Φ2 =

µ0 Ag N

2 (g0 − xg)
I2. (1)

Here,µ0 denotes the permeability of free space,N is the number of coil turns on each magnet,
A denotes the gap area under each magnet, andg0 is the nominal air gap on each side when the
rotor is centered. In (1), the iron lengthlfe is either neglected or subsumed into the nominal gap
g0 = g0,air + lfe/µr. Combining the Kirchhoff law with Faraday’s induction law yields

U1 = N
dΦ1

dt
+ RI1 , U2 = N

dΦ2

dt
+ RI2 (2)

in whichR is the ohmic coil resistance,Ui are the voltages applied to the coils (input signals), and
Ii are the measured coil currents (output signals). The principle of virtual work allows to determine
the attractive forcesf1, f2 produced by each electromagnet. They are given by

f1 =
Φ 2

1

µ0 Ag

, f2 =
Φ 2

2

µ0 Ag

. (3)

Newton’s law leads to

m
d2xg

dt2
=

Φ 2
2 − Φ 2

1

µ0 Ag

+ fext (4)

wherem is the rotor mass andfext is an unknown disturbance force. Equation (1) and (2) lead to

dΦ1

dt
= −R

2 (g0 + xg)

µ0 Ag N2
Φ1 +

U1

N
,

dΦ2

dt
= −R

2 (g0 − xg)

µ0 Ag N2
Φ2 +

U2

N
. (5)

Equations (4), (5) and (1) form a 4th order nonlinear model with inputU1, U2 and outputI1 andI2.

2.2 Scaling and Variable Change

Scaling the state variables and the time axis has several benefits: the number of parameters is re-
duced allowing a deeper physical insight, and the order of magnitude of all scaled state variables is
close to one. This improves the numerical conditionning of the subsequent LMI optimization prob-
lem. Following [2] the normalization is based on the saturation1 flux density of the materialBsat.
The time scale can be normalized byt̃ = t/τm, whereτm is an electro–mechanical time constant.
The latter corresponds to the minimum time of flight of massm from center to contact with one
of the magnets applying maximum force corresponding to saturationBsat. Additionally, a variable
change in the state, input and output variables is applied which replaces the individual signals of
both actuators(·)1, (·)2 by the sum and the difference signals denoted with subscripts (·)s, (·)d.

1The choice of Bsat has no effect on the subsequent results because it just rescales the internal states of the model.
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Figure 1: Magnetic Bearing Configuration.

The only remaining parameter of the scaled plant is time scale ratioη = τm/τe, whereτe denotes
the electrical time scaleτe = L0/R. Following [2] we get the non–dimensional system (S)

ẋn = v (6)

v̇ = φs φd (7)

φ̇d = −η φd + η xn φs + ud (8)

φ̇s = −η φs + η xn φd + us (9)

id = φd − xn φs (10)

is = φs − xn φd (11)

where the derivation dot˙ meansd/dt̃. For the ease of notation, the tilde is left away in the sequel
and the normalized time is simply calledt. The only nonlinearities appearing in the above model
are the products2 of state variablesxn φs andxn φd. If we could impose the bias flux signalφs(t)
the system would becomelinear with time varyingcoefficients. The following chapter shows how
this can be achieved approximately.

2.3 Linearization and System Decoupling

We linearize the above system around a periodic trajectory for the case without loadfext = 0. For
this we fix a periodic signalus(t) and denote byφsp(t) the unique periodic solution of equation
φ̇s = −η φs + us. Assumingud = 0, one observes thatx = (0, 0, 0, φsp)

t is a periodic solution
of system (S). A linearization around this solution leads toa decoupled system which consists of a
first order LTI system for the stateφs and a third order LTP for the statesxn, v, φd, see figure 2.
The latter is given by

(
ẋn

v̇
φ̇d

)

=

(
0 1 0
0 0 φsp(t)

η φsp(t) 0 −η

)(
xn

v
φd

)

+

(
0
0
1

)

ud (12)

id = ( −φsp(t) 0 1 )

(
xn

v
φd

)

. (13)

In the following, signalus(t) will be chosen in order thatφsp(t) = φ0 (1 + Γext sin(ωext t)).
2If the bias flux φs varies much faster than displacement xn the product xn φs causes a modulation of current id in (10).
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Figure 2: Linearization around periodic trajectory leads to decoupling.

2.4 Discretization and Lifting

Following [4] the LTP model can be discretized using an Eulerapproximation at the sampling rate
ts = 2π/(Np ωext), whereNp is the number of desired sample points over one period. This yields a
discrete periodic system of the form

x(k + 1) = A(k) x(k) + B ud(k) (14)

y(k) = id(k) = C(k) x(k) (15)

whereA(k) andC(k) are varying with periodNp, i.e.A(k+Np) = A(k) andC(k+Np) = C(k).
The theory for tackling such linear periodic systems is welldeveloped, refer to [5, 6]. A particularly
useful norm–preserving lifting technique [6] allows to transform the discretized LTP plant into a
multivariable LTI plant. The input and output signals over one period are packed into vector signals,
and the system is resampled at periodTp = 2π/ωext. This allows to benefit from the huge panoply
of existing LTI tools.

Table 1: Physical and non–dimensional parameters

symbol value unit

max. current Imax 3 A
max. voltage Umax 100 V
number of turns N 180 -
nominal air gap g0 0.55 mm
mean pole area Ag 604 mm2

coil resistance at DC R 3.0 Ω
nominal inductance @ g0=0.55 mm L0 22.35 mH
rotor mass m 3.31 kg
bias current I0 1.5 A
magnetic saturation scaling Bsat 1.2 T
mechanical time constant τm 1.6218 · 10−3 s
electrical time constant τe 7.4521 · 10−3 s

ratio of time scales η 0.2176 -
nondimensional bias flux Φ0 0.6169 -
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3 Problem Setup for LTP Controller Synthesis

A first result concerns the analysis of achievable robustness for low frequency dither excitation. As
robustness measure the norm of the input sensitivity3

||Si||∞ = ||(I −C P )−1
||∞ is used, whereP

denotes the LTP plant andC denotes the LTP controller. Table 1 lists the parameter values used for
the following study. Figure 3 shows the achievable input sensitivity norm as a function of excitation
amplitudeΓext for two different excitation frequenciesωext. It appears that the bounds [2, 4] are
too optimistic, and that the achievable input sensitivity norm isnotmonotonically decreasing w.r.t.
excitation amplitudeΓexc. As a worrying result, it appears thatlow excitation frequencies and low
excitation amplitudesmay behaveworsethan no excitation at all!

The discrepancy with [2, 4] can be explained as follows: the lifted LTI state–space matrices have
a specific structure resulting from the lifting process. Thefeedthrough matrixD has a triangular
structure resulting from the causality of the underlying LTP plant. When optimizing over all stabi-
lizing LTI controllers in the lifted space, the structural constraints arenot taken into account, and
the bounds are too optimistic. Furthermore, delifting of the resulting controller is impossible. As a
remedy, the present work uses direct LTP synthesis using periodic Riccati equations [6] and linear
matrix inequalities (LMI). The latter approach is available as LTV toolbox [7].
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Figure 3: Achievable robustness as a function of dither excitation amplitude and frequency.

Minimizing the sensitivity norm is an ill–posed problem since the resulting controller has infi-
nite high frequency gain. Therefore, a multi–objective design problem is formulated according
to figure 4. Two exogenous performance channels are introduced. The first channel goes from
(w1, w2)

t to z1 leading to the closed–loop map((I − C P )−1, (I − C P )−1 CWc). Here,Wc is
a scalar weighting allowing to penalize the high frequency controller gain. The second channel
goes fromw3 to z2 leading to a closed–loop mapWf2 TcWf1. Here,Tc represents the map from an
external disturbance force to the rotor displacement subsequently called mechanical compliance.
The scalar weightingsWf1 andWf2 allow to penalize the norm of mechanical complianceTc. The
spatial constraint given by the channel structure is captured by the square norm [7]. The corre-
sponding design problem isconvexand can be solved by LMI’s using the LTV toolbox [7]. For
Np = 50 points per period the resulting LMI problem turns out to havealmost 1’000 scalar decision
variables. The calculation takes about 5 minutes on a standard PC. It makes no sense to choose a
higher value ofNp since the result is almost independent fromNp beyondNp > 50. Furthermore,
numerical problems may occur ifNp is too high, and the calculation time increases rapidly.

3The ISO standard (14839-3) for AMB systems recommends a threshold sensitivity of 3.0 for the acceptance of commercial

AMB systems. This value is based on consensus of industry experts.
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Figure 4: Problem setup for LTP H∞ optimization.

4 LTP Controller Results

The resulting closed–loop of LTP controller and linearizedLTP plant is analyzed. The closed–loop
matrices are found by lifting the LTP plant and the LTP controller to discrete LTI systems, and by
building the feedback interconnection.

Table 2: Performance trade–offs for different excitation and weighting parameters

trial fexc Γexc Np Wc Wf1 Wf2 ||Si||∞ ||C||∞ ||Tc||∞ comment
Hz V/A µm/N

1# 0 - - 0.0 0.0 0.0 4.45 ∞ 7.5 LTI, opt. sensitivity bound
2# 0 - - 0.3 0.0 0.0 4.85 218 8.4 LTI, mixed sensitivity
3# 200 0.5 50 0.1 0.0 0.0 3.61 3’169 19.1 LTP, high controller gain
4# 200 0.5 50 0.3 0.0 0.0 3.88 425 18.0 reduced controller gain
5# 200 0.5 30 0.3 0.0 0.0 3.91 414 18.1 quite insensitive w.r.t. N
6# 400 0.5 30 0.2 0.0 0.0 2.15 474 24.0 mech. compliance too high
7# 400 0.5 30 0.2 1.0 0.2 3.84 834 8.3 compl. ց, but otherwise ...
8# 1000 0.5 30 0.4 0.0 0.0 1.97 164 20 compliance too high
9# 1000 0.5 30 0.4 1.0 0.2 2.91 262 7.5 better compliance
10# 1000 0.2 30 0.4 1.0 0.2 4.92 237 5.4 lower excitation level
11# 1000 0.2 30 0.4 0.0 0.0 3.42 155 9.2 sensitivity ց

The virtual sampling period of the lifted closed–loop corresponds tots = 1/fexc. The analysis car-
ried out comprises the computation4 of the closed–loop poles, theH∞ norm of the input sensitivity
||Si||∞, the controller norm||C||∞, and the norm of mechanical compliance||Tc||∞.

4Using the Robust Control Toolbox of Mathworks c©.
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Figure 5: Possible Trade–Offs.

The discrete closed–loop poles in thez domain can be converted to equivalents domain poles by
the relationships = log(z)/ts. It turns out that the closed–loop poles include the stable plant pole
s = −167± 198 j rad/s for the case without compliance weightingWf1 = Wf2 = 0. This closed–
loop pole is the slowest because its the closest pole w.r.t. the imaginary axis, and therefore becomes
dominant for the transient behaviour. The corresponding undamped natural frequency corresponds
to fcl = |s|/(2 π) = 41 Hz. For non–zero compliance weightingsWf1, Wf2, we observed that
the natural frequency of the dominant closed–loop pole increases. For the case #9 of table 2,
the dominant natural closed–loop frequency increases tofcl = 54 Hz due to higher compliance
weighting.

To analyze the results in table 2 we introduce the ratiofexc/fcl. The casefexc = 200 Hz corres-
ponds to an excitation ratio offexc/fcl ≈ 5.

For low excitation ratiosfexc/fcl < 5 and low excitation levelsΓexc < 0.4 the achievable robustness
of the LTP system isworsethan for the LTI case with no excitation since the curve of||Si||∞ in
figure 3 is not monotonically decreasing w.r.t. excitation amplitudeΓexc. This result is new and
surprising. Table 2 shows that a low excitation ratio offexc/fcl = 5 and an excitation level of
Γexc = 0.5 is not realistic because the input sensitivity norm and/or the controller norm are too
high.

A realistic controller design needs an excitation ratiofexc/fcl > 10. This corresponds to the 400 Hz
case in table 2 where moderate sensitivity and controller norms can be achieved. But the mechanical
compliance stays high, which corresponds tolow bearing stiffness. A high stiffness self–sensing
bearing with acceptable robustness properties and realistic performance needs an excitation ratio
fexc/fcl > 20. Design #9 in table 2 shows a trade–off where all of the three objectives yield
acceptable values. However it should be noted that such highfrequency excitations need enough
voltage supply level (100V in case #9), and may violate the assumption of negligible eddy currents.

Figure 6 shows a closed–loop simulation using the LTP controller design #9 from table 2 and the
originalnonlinearplant. The bias excitation is injected via voltageus using the inverse dynamics of
the LTI bias plant5. A perturbation force is applied as external excitation signal. This perturbation

5In practice, the value of coil resistance R is subject to thermal drift. Since this drift is very slow the precise value of R can

467

The Twelfth International Symposium on Magnetic Bearings (ISMB 12)
Wuhan, China, August 22-25, 2010



0 0.05 0.1 0.15 0.2 0.25 0.3
0

50

100

150

200

250

300

350

400

time   [s]

di
sp

la
ce

m
en

t  
[µ

m
], 

  f
or

ce
 / 

[0
.1

*N
]

Closed−loop behaviour with LTP controller

 

 

perturbation force [0.1*N]
true displacement [µm]

Figure 6: Closed–loop simulation result with nonlinear plant and LTP controller design #9.

force steps by increments of 10 N from zero to 40 N. The time response of the true displacement
is shown in figure 6. The result shows a fast and well–damped behaviour of the displacement for
the first two steps. Note that the controller does not exhibitan integral term which explains the
static excursion of displacement. The static compliance and the norm||Tc||∞ have the same order
of magnitude. For the high load steps from 20 to 30 N and from 30to 40 N the damping of the time
response progressively decreases. The final value of displacement corresponds to a typical value of
rotor clearance (0.25 mm), which is usually half the value ofthe air gap (0.5 mm). The progressive
change of the step response at high load is explained by the plant nonlinearity. The change is due to
a change in bias fluxφsp(t). The periodic trajectory no longer corresponds to the periodic trajectory
used for linearization. The decoupling of the LTI bias dynamics and the LTP differential dynamics
becomes non–ideal at high load conditions.

5 Nonlinear Controller Results

Extended (nonlinear) Kalman estimators (EKF) and the nonlinear Lyapunov–based Maslen esti-
mator [3] have been investigated. The overall control structure comprises a cascade structure with
a flux controller, and a position controller having the desired bearing force as output signal. This
cascade structure is a special case of observer–based statefeedback with time–periodic coefficients.
For both nonlinear approaches parametrizations were foundallowing a stable closed–loop. Com-
pared to the LTP controller case it is much less obvious how totune the parameters and how to
find good design trade–offs. The lack of the panoply of analysis tools available for LTI and LTP
systems impedes the search for good design trade–offs in thenonlinear case. The detailed results
will be presented in a later publication.

6 Conclusion

The LTPH∞ approach presented in this paper is a very systematic approach for investigating design
trade–offs involving the sensitivity norm, the controllergain, and the resulting bearing compliance.
It allows to generate a discrete linear time–periodic controller described by state–space matrices

easily be tracked by dividing averaged values of voltage and measured current.
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Ac(k),Bc(k),Cc(k),Dc(k) where the index k cyclically sweeps from 1 to Np and back to 1. All
matrices are pre–computed offline using LMI optimization techniques, and can be stored in
target memory which allows a very efficient real–time implementation of the controller. It is
shown that the ratio between the excitation frequency and the natural frequency of the dominant
closed–loop pole should be higher than 20, i.e. fexc/fcl > 20 to ensure good robustness and
performance properties.

7 Outlook
A magnetic bearing test rig is currently being developed in order to implement and
experimentally validate the results obtained in this paper.
A certain number of open questions remains. A first question concerns the choice of input
sensitivity norm as an indicator for robustness. Of course this choice was guided by the ISO
standard 14839–3 stipulating a reasonable threshold sensitivity of 3.0. But the ISO standard
concerns standard sensor–based magnetic bearings, and today, there is no available field
experience indicating whether it is reasonable or not to apply the ISO standard to self–sensing
bearings. Sensitivity norm optimization over the large class of LTP uncertainty operators may
induce conservatism. It would be interesting to consider a more realistic polytopic model for
parameter uncertainties.
Another important point concerns the inclusion of eddy currents in the model. It would be
interesting to utilize the LTP framework described in this paper for the eddy current model, and
to investigate the optimal choice of excitation frequency.
A last issue concerns multi–objective H control. Instead of using the spatial constraint method
described in [5] it might be interesting to investigate the multi–objective approach proposed in
[8].
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