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Abstract: In this paper, the controller design for self-sensing magnetic bearings is considered using a linear time
periodic (LTP) framework. The time periodicity comes from a deliberate bias flux excitation signal allowing to
improve the plant properties. Design trade—offs using periodic controllers are investigated. Three design objectives
are considered: 1) low sensitivity norm to ensure good robustness, 2) low controller gain to attenuate current
measurement noise and to avoid voltage saturation, and 3) low mechanical compliance against external perturbation
forces to ensure high bearing stiffness. Different LTP H,, controllers are designed using lifting techniques and linear
matrix inequalities (LMI). The resulting controllers are validated using closed—loop simulations with the nonlinear
plant.
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Introduction

Self-sensing permits active magnetic bearings to dispense with dedicated position sensors and,
instead, reconstruct rotor position information from the voltage and current signals of the
actuator coils. Thus, the hardware amount in the machine environment and the amount of
cabling can be reduced, which potentially increases hardware reliability.
But all experts in magnetic bearings agree that self-sensing is inherently difficult, and may
potentially suffer from poor performance and/or poor robustness. The research activities in
self-sensing were boosted with the announcement of the first commercial self-sensing magnetic
bearing for turbomolecular pumps [1] and with the publication of [2], [3] opening new research
directions in self—sensing. In [2] the achievable robustness of self-sensing is analyzed in a linear
periodic (LTP) framework. It is concluded that the achievable robustness dramatically improves
by exciting the system with a periodic flux signal (dither) and by utilizing linear time periodic
controllers. The cur-rent paper continues and extends the research direction of [2] and [4]. This
paper has two objectives:
® to analyze the achievable performance and robustness in the case of low dither frequency.
This is important to avoid the sensitivity deteriorating effects of eddy currents, and to be
more independent from parasitic capacitance (e.g. long bearing cables). Dither frequencies
in the range of 4... 20 times higher than the closed—loop bandwidth are considered.
Synchronous demodulation allows to build a special case of periodic controllers, but they
typically need a much higher gap between the bandwidth and the dither frequency.
® to analyze and compare in simulation the robustness and performance of several linear
peri-odic and nonlinear estimator and control strategies for self-sensing magnetic bearings.
Multi—objective design trade—offs between robustness, noise attenuation and bearing
stiffness are investigated.
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2 Moddling
2.1 Standard Nonlinear Model

The following simplification hypotheses are assumed thhoug this chapter: eddy currents, leak-
age and fringing effects are neglected, the magnetic naaterssumed to be linear (no saturation,
no hysteresis), and the flux density is assumed to be unijodistributed throughout the magnet

core and air gap. The modelling used in this paper is staratat@orresponds to [2]. Ampere’s law

gives the following relation between the magnetic flukesn each magnet and the coil curreiits
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A _FPofre st
2(90 +l‘g) 2(90 _xg)

Here, 119 denotes the permeability of free spacé,is the number of coil turns on each magnet,
A denotes the gap area under each magnetgaimsithe nominal air gap on each side when the
rotor is centered. In (1), the iron lengtf is either neglected or subsumed into the nominal gap
90 = 9o,air + lte/ 1. Combining the Kirchhoff law with Faraday’s induction lavnelds
dq)l d®2
Uy=N— + RI Up=N—=+ RI 2
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in which R is the ohmic coil resistancéj; are the voltages applied to the coils (input signals), and
I; are the measured coil currents (output signals). The mimoif virtual work allows to determine
the attractive forceg,, f> produced by each electromagnet. They are given by

d, = , Py = Is. (1)
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wherem is the rotor mass anfl.; is an unknown disturbance force. Equation (1) and (2) lead to
0 p2Mtag)g U AP p2(0—m)y U
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Equations (4), (5) and (1) form a 4th order nonlinear mod#éhwiputlU;, U, and output/; and ;.

2.2 Scaling and Variable Change

Scaling the state variables and the time axis has severafitseerthe number of parameters is re-
duced allowing a deeper physical insight, and the order gfmtade of all scaled state variables is
close to one. This improves the numerical conditionnindnefsubsequent LMI optimization prob-
lem. Following [2] the normalization is based on the satoratflux density of the materiaB, ;.
The time scale can be normalized by t/7,,, wherer,, is an electro—mechanical time constant.
The latter corresponds to the minimum time of flight of masfrom center to contact with one
of the magnets applying maximum force corresponding toraatun B,,;. Additionally, a variable
change in the state, input and output variables is appliedhwieplaces the individual signals of
both actuators-);, (-)» by the sum and the difference signals denoted with subsdript (-) .

1The choice of Bsqt has no effect on the subsequent results because it just rescales the internal states of the model.
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Figure 1: Magnetic Bearing Configuration.

The only remaining parameter of the scaled plant is timeesedlon = 7,,,/7., wherer, denotes
the electrical time scale. = L,/ R. Following [2] we get the non—dimensional system (S)

T, = U (6)
U= $sPa (7)
Ga = —Nda + NTuds + Ug (8)
b5 = —nds + NTada + U (9)
la = Pa — Tn®s (10)
is = Qs — Tnd (11)

where the derivation dotmeansd/dt. For the ease of notation, the tilde is left away in the sequel
and the normalized time is simply calledThe only nonlinearities appearing in the above model
are the productsof state variables,, ¢, andz,, ¢,4. If we could impose the bias flux signal ()

the system would beconmimear with time varyingcoefficients. The following chapter shows how
this can be achieved approximately.

2.3 Linearization and System Decoupling

We linearize the above system around a periodic trajectorthe case without load..; = 0. For
this we fix a periodic signal:;(t) and denote byp,,(t) the unique periodic solution of equation
bs = —n ¢s + us. Assumingu, = 0, one observes that = (0,0, 0, ¢5,)" is a periodic solution
of system (S). A linearization around this solution leada ttecoupled system which consists of a
first order LTI system for the statg, and a third order LTP for the states, v, ¢4, see figure 2.
The latter is given by

T 0 1 0 Tn 0
<@>>:( 0 o¢sp<t>)<v>+(o>ud 12)
ba nesp(t) 0 —n ¢ 1

Tn

v = (—gy(t) 0 1) <u ) (13)
Ga

In the following, signak:(t) will be chosen in order that,,(t) = ¢ (1 + Text sin(wext?)).

2If the bias flux ¢, varies much faster than displacement x,, the product z, ¢s causes a modulation of current ig in (10).
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Figure 2: Linearization around periodic trajectory leads to decoupling.

2.4 Discretization and Lifting

Following [4] the LTP model can be discretized using an Eajgrroximation at the sampling rate
ts = 2m/(N, wext), WhereN, is the number of desired sample points over one period. Teids/a
discrete periodic system of the form

x(k+1) = A(k)x(k) + Bug(k) (14)
y(k) = ia(k) = C(k)x(k) (15)

whereA(k) andC(k) are varying with periodv,, i.e. A(k + N,) = A(k) andC(k + N,) = C(k).
The theory for tackling such linear periodic systems is welleloped, refer to [5, 6]. A particularly
useful norm—preserving lifting technique [6] allows tortséorm the discretized LTP plant into a
multivariable LTI plant. The input and output signals ovee@eriod are packed into vector signals,
and the system is resampled at perigo= 27 /wext. This allows to benefit from the huge panoply
of existing LTI tools.

Table 1: Physical and non-dimensional parameters

\ symbol | value \ unit ‘
max. current Loz 3 A
max. voltage Unmaz 100 \%
number of turns N 180 -
nominal air gap 4o 0.55 mm
mean pole area A, 604 mm?
coil resistance at DC R 3.0 Q
nominal inductance @ gop=0.55 mm Ly 22.35 mH
rotor mass m 3.31 kg
bias current Iy 1.5 A
magnetic saturation scaling Biat 1.2 T
mechanical time constant Tm 1.6218-1073 | s
electrical time constant Te 7.4521-1073 | s
ratio of time scales i 0.2176 -
nondimensional bias flux P 0.6169 -
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3 Problem Setup for LTP Controller Synthesis

A first result concerns the analysis of achievable robustfedow frequency dither excitation. As
robustness measure the norm of the input sensitiViy||.. = ||(I — C' P)7!|| is used, where®
denotes the LTP plant artd denotes the LTP controller. Table 1 lists the parametereglised for
the following study. Figure 3 shows the achievable inpusgeity norm as a function of excitation
amplitudel'ey; for two different excitation frequenciesy:. It appears that the bounds [2, 4] are
too optimistic, and that the achievable input sensitiviblym isnot monotonically decreasing w.r.t.
excitation amplitudé’.... As a worrying result, it appears thatv excitation frequencies and low
excitation amplitudemay behavavorsethan no excitation at all!

The discrepancy with [2, 4] can be explained as follows: itted LTI state—space matrices have
a specific structure resulting from the lifting process. Téwdthrough matrixD has a triangular
structure resulting from the causality of the underlyind’Lglant. When optimizing over all stabi-
lizing LTI controllers in the lifted space, the structurainstraints areot taken into account, and
the bounds are too optimistic. Furthermore, delifting @ tbsulting controller is impossible. As a
remedy, the present work uses direct LTP synthesis usingdgieRiccati equations [6] and linear
matrix inequalities (LMI). The latter approach is avaikabls LTV toolbox [7].

Bias excitation frequency feXC =200 Hz Bias excitation frequency fexC =600 Hz
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Figure 3: Achievable robustness as a function of dither excitation amplitude and frequency.

Minimizing the sensitivity norm is an ill-posed problem @nthe resulting controller has infi-
nite high frequency gain. Therefore, a multi—objectiveigieproblem is formulated according
to figure 4. Two exogenous performance channels are intestud@he first channel goes from
(w1, ws)! to 2, leading to the closed—loop mdpl — C P)~!, (I — C P)"'CW,). Here,W, is

a scalar weighting allowing to penalize the high frequenagtller gain. The second channel
goes fromw; to 2, leading to a closed—loop map, 7. W;,. Here, T, represents the map from an
external disturbance force to the rotor displacement splesdly called mechanical compliance.
The scalar weightingB/;; andW;, allow to penalize the norm of mechanical compliaficeThe
spatial constraint given by the channel structure is capitiny the square norm [7]. The corre-
sponding design problem nvexand can be solved by LMI’'s using the LTV toolbox [7]. For
N, = 50 points per period the resulting LMI problem turns out to haeost 1’000 scalar decision
variables. The calculation takes about 5 minutes on a stdri®la. It makes no sense to choose a
higher value ofVN,, since the result is almost independent frafnbeyondN,, > 50. Furthermore,
numerical problems may occur ¥, is too high, and the calculation time increases rapidly.

3The ISO standard (14839-3) for AMB systems recommends a threshold sensitivity of 3.0 for the acceptance of commercial
AMB systems. This value is based on consensus of industry experts.
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Figure 4: Problem setup for LTP #,, optimization.

4 LTP Controller Results

The resulting closed—loop of LTP controller and lineariz@® plant is analyzed. The closed—loop
matrices are found by lifting the LTP plant and the LTP colferao discrete LTI systems, and by
building the feedback interconnection.

Table 2: Performance trade—offs for different excitation and weighting parameters

trial || fewe | Tewe | Np || We | Wi | Wea || [[Sille | [|Clloe | [ Tel|loo | comment

Hz V/A | pum/N
14# 0 - - || 0.0 0.0 0.0 4.45 00 7.5 | LTI, opt. sensitivity bound
24 0 - -/ 0.3 0.0 0.0 4.85 218 8.4 | LTI, mixed sensitivity

3# 200 0.5 | 50 || 0.1 0.0 0.0 3.61 3’169 19.1 | LTP, high controller gain
4# 200 0.5 ] 50 || 0.3 0.0 0.0 3.88 425 18.0 | reduced controller gain

5# 200 0.5 1] 30| 0.3 0.0 0.0 3.91 414 18.1 | quite insensitive w.r.t. N
67 400 0.5 | 30 | 0.2 0.0 0.0 2.15 474 24.0 | mech. compliance too high

T# 400 0.5 | 30 | 0.2 1.0 0.2 3.84 834 8.3 | compl. Y\, but otherwise ...
8% || 1000 0.5 30| 0.4 0.0 0.0 1.97 164 20 | compliance too high
9# || 1000 0.5 | 30| 0.4 1.0 0.2 291 262 7.5 | better compliance

104 || 1000 02| 30| 04 1.0 0.2 4.92 237 5.4 | lower excitation level

114 || 1000 02| 30| 04 0.0 0.0 3.42 155 9.2 | sensitivity \,

The virtual sampling period of the lifted closed—loop cepends ta, = 1/ f.... The analysis car-
ried out comprises the computatioof the closed—loop poles, thé.. norm of the input sensitivity
||:S:||~0, the controller norm|C||, and the norm of mechanical complian¢g.|| .

4Using the Robust Control Toolbox of Mathworks®©.
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Figure 5: Possible Trade—Offs.

The discrete closed-loop poles in thelomain can be converted to equivalerdomain poles by
the relationship = log(z)/t,. It turns out that the closed—loop poles include the stalaletpole

s = —167 £ 198 j rad/s for the case without compliance weightig, = Wy, = 0. This closed-
loop pole is the slowest because its the closest pole vineintaginary axis, and therefore becomes
dominant for the transient behaviour. The correspondirdamped natural frequency corresponds
to fu =|s|/(27) =41 Hz. For non-zero compliance weighting8;,, Wy,, we observed that
the natural frequency of the dominant closed—loop poleemses. For the case #9 of table 2,
the dominant natural closed—loop frequency increases; te 54 Hz due to higher compliance
weighting.

To analyze the results in table 2 we introduce the rgtip/ f,. The casef... = 200 Hz corres-
ponds to an excitation ratio ¢f../f4 ~ 5.

For low excitation ratiog.../ f« < 5and low excitation levelE.,. < 0.4 the achievable robustness
of the LTP system isvorsethan for the LTI case with no excitation since the curve|sf||« in
figure 3 is not monotonically decreasing w.r.t. excitationpditudeI.,.. This result is new and
surprising. Table 2 shows that a low excitation ratiofof./f, = 5 and an excitation level of
I'... = 0.5 is not realistic because the input sensitivity norm andier d¢ontroller norm are too
high.

A realistic controller design needs an excitation rgtiQ/ f; > 10. This corresponds to the 400 Hz
case in table 2 where moderate sensitivity and controllene@an be achieved. But the mechanical
compliance stays high, which correspondsaw bearing stiffnessA high stiffness self-sensing
bearing with acceptable robustness properties and liegistformance needs an excitation ratio
fexe/fa > 20. Design #9 in table 2 shows a trade—off where all of the thigeatives yield
acceptable values. However it should be noted that suchfregliency excitations need enough
voltage supply level (100V in case #9), and may violate tiseiagption of negligible eddy currents.

Figure 6 shows a closed—loop simulation using the LTP cdatrdesign #9 from table 2 and the
originalnonlinearplant. The bias excitation is injected via voltageusing the inverse dynamics of
the LTI bias plant. A perturbation force is applied as external excitatiomalg This perturbation

5In practice, the value of coil resistance R is subject to thermal drift. Since this drift is very slow the precise value of R can
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Closed-loop behaviour with LTP controller

— 400

-)<Z —— perturbation force [0.1*N]

1 350 —— true displacement [um]

=3

~

© 300

(@]

S

o

4= 250

E 200+

="

2 150+

£

@ 100

Q

<

Q_ .

@ 50

©
0 | | | I I ]
0 0.05 0.1 0.15 0.2 0.25 0.3

time [s]

Figure 6: Closed—loop simulation result with nonlinear plant and LTP controller design #9.

force steps by increments of 10 N from zero to 40 N. The timpamrse of the true displacement
is shown in figure 6. The result shows a fast and well-damp&dweur of the displacement for
the first two steps. Note that the controller does not exlabiintegral term which explains the
static excursion of displacement. The static complianckthe norm||T.||.. have the same order
of magnitude. For the high load steps from 20 to 30 N and froo3M N the damping of the time
response progressively decreases. The final value of deplent corresponds to a typical value of
rotor clearance (0.25 mm), which is usually half the valuthefair gap (0.5 mm). The progressive
change of the step response at high load is explained bydhémbnlinearity. The change is due to
achange in bias flux,(¢). The periodic trajectory no longer corresponds to the piitvajectory
used for linearization. The decoupling of the LTI bias dymasand the LTP differential dynamics
becomes non-ideal at high load conditions.

5 Nonlinear Controller Results

Extended (nonlinear) Kalman estimators (EKF) and the neali Lyapunov—-based Maslen esti-
mator [3] have been investigated. The overall control stmeccomprises a cascade structure with
a flux controller, and a position controller having the dedibearing force as output signal. This
cascade structure is a special case of observer—basefistdtack with time—periodic coefficients.
For both nonlinear approaches parametrizations were falloging a stable closed—loop. Com-
pared to the LTP controller case it is much less obvious hotunie the parameters and how to
find good design trade—offs. The lack of the panoply of analyls available for LTI and LTP
systems impedes the search for good design trade—offs mothieear case. The detailed results
will be presented in a later publication.

6 Conclusion

The LTPH ., approach presented in this paper is a very systematic agpforinvestigating design
trade—offs involving the sensitivity norm, the controlggin, and the resulting bearing compliance.
It allows to generate a discrete linear time—periodic aalgr described by state—space matrices

easily be tracked by dividing averaged values of voltage and measured current.
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Ac(k),Bc(k),Cc(k),Dc(k) where the index k cyclically sweeps from 1 to Np and back to 1. All
matrices are pre—computed offline using LMI optimization techniques, and can be stored in
target memory which allows a very efficient real-time implementation of the controller. It is
shown that the ratio between the excitation frequency and the natural frequency of the dominant
closed—loop pole should be higher than 20, i.e. fexc/fa > 20 to ensure good robustness and
performance properties.

7 Outlook

A magnetic bearing test rig is currently being developed in order to implement and
experimentally validate the results obtained in this paper.

A certain number of open questions remains. A first question concerns the choice of input
sensitivity norm as an indicator for robustness. Of course this choice was guided by the ISO
standard 14839-3 stipulating a reasonable threshold sensitivity of 3.0. But the 1SO standard
concerns standard sensor-based magnetic bearings, and today, there is no available field
experience indicating whether it is reasonable or not to apply the ISO standard to self—sensing
bearings. Sensitivity norm optimization over the large class of LTP uncertainty operators may
induce conservatism. It would be interesting to consider a more realistic polytopic model for
parameter uncertainties.

Another important point concerns the inclusion of eddy currents in the model. It would be
interesting to utilize the LTP framework described in this paper for the eddy current model, and
to investigate the optimal choice of excitation frequency.

A last issue concerns multi-objective H.control. Instead of using the spatial constraint method
described in [5] it might be interesting to investigate the multi—objective approach proposed in

[8].
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