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Abstract: Active Magnetic Bearings, due to a plant-intrinsic instability, require a control system for normal
operation. Many control strategies have been proposed for the stabilization task, in some instances emphasizing
market recognized control approaches, as PID controllers arranged in decentralized structures, and in other
instances modern control approaches are envisaged, like LQR or H∞ structures. The objective of this paper is
to present criteria to assess the performance of such proposed controllers, in order to establish a metric to
compare different control schemes. The performance assessment criteria discussed include time domain as well
as frequency domain approaches. Such criteria are applied to two control systems used in a laboratory
prototype to stabilize a bearingless motor, being one based on PID controllers and the other being a LQR
scheme. Discussion of the results is used to select a metric to be applied in the comparison of some controller
algorithms, both centralized and decoupled, in order to determine which control law best suits such a
bearingless motor.
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Introduction

Magnetic bearings, being intrinsically unstable, have been made feasible with the usage of
control systems. Many different control schemes have been proposed [1, 2, 3, 4, 5]. In some
instances, the evaluation of the control loop performance has been based on traditional
indexes, like step response. Nevertheless, magnetic bearings have a scope which require,
more than anything, that a central position be maintained no matter what disturbances are
likely to be applied. It is recognized that there is not a unique optimal approach to such a
control problem, but the best approach for the specific plant dynamic under consideration.
To address this performance assessment problem, a criteria that allows for a better
benchmarking of the different control approaches applied to a specific plant was reached.

Among the various approaches found in literature for performance assessment, two are
selected for analysis, in order to be applied to the problem of benchmarking controllers used
in a bearingless induction motor. Firstly, the basic theory of stochastic performance
assessment is discussed, based on the work of [6] and [7]. A frequency domain approach is
briefly discussed, as presented by [8].

Performance Assessment Criteria

Controller performance assessment is a discipline that has been explored mainly by the area
of process control, and has produced different criteria to monitor and evaluate control loop
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performance. Qin [6] presented various techniques that appear in recent literature, and has
explored a method of his own; this review of criteria presents both minimum variance based
algorithms, as well as frequency domain approaches. In the following sections, stochastic
performance evaluation and frequency domain analysis are briefed.
Stochastic Performance Assessment. Consider the control structure shown in Figure 1. By
inspection, the following development applies:

Figure 1 Control structure

Assuming that polynomials Ap, Bp, Aw and Bw are stable, meaning that they have their
roots inside the unit circle [6], and letting yr = 0, then the following expressions may be
written:

Finally

By long division, y(k) may be expressed as

According to [7], this series converges if closed loop system is stable, and this expansion
is valid for the computation of impulse weights ψi. The first b-1 weights ψi are equal to the
b-1 coefficients of the impulse response of the disturbance transfer function and are not
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affected by any controller been applied to the plant. The net result is that, under minimum
variance controller, the system output variance is given by:

Those results lead to the following performance assessment evaluation algorithm using plant

output data [6]:

1. Estimate process delay b.

2. Identify closed loop model, relating plant output to noise w. An ARMA model is

suggested for this purpose.

3. Obtain impulse response by considering the leading b-1 coefficients of

y(k) = w(k) + ∑1
b-1 ψi w(k-i) + remainder

4. Calculate minimum variance estimate, given by

σMV
2 = (1 + ∑1

b-1 ψi
2 (i)) σw

2. (9)

5. Estimate plant output variance σy
2 .

6. Calculate index ξ based on the expression

ξ = σy
2/ σMV

2 (10)

This last step is proposed by [7] as a mean to compare the plant output when the proposed

controller is acting with a theoretical plant output using a minimum variance controller.

Frequency Domain Performance Assessment. Kendra[8] proposes a different approach,
based on the estimate of the sensitivity transfer function S(s) and on the complementary
sensitivity transfer function T(s). Considering again figure 1, the calculation of those transfer
functions can be made. The sensitivity transfer function S(s) is obtained as

S(s) = (I + Gp(s) Gc(s))-1 . (11)

while complementary sensitivity transfer function T(s) is calculated as

T(s) = Gp(s) Gc(s) (I + Gp(s) Gc(s))-1 . (12)

Let the maximum singular value of S(jw) be noted as σ(S(jw)). Let the system bandwidth
ωB be the frequency at which σ(S(jw)) becomes greater than 1/√2. This bandwidth measures
the speed at which the system will reject disturbances at the plant output [8].By the same
token, σ(T(jw)) can measure the robustness of the controller to uncertainties in the plant
model used to design the controller.

Bearingless Motor Prototype Modeling

The prototype available at the Laboratory of Applied Superconductivity (LASUP), at the
Federal University of Rio de Janeiro (UFRJ) is a two phase four pole split winding
bearingless induction machine [3,4]. Figure 2 show its geometry and winding arrangement.

Though the prototype has been constructed to have one axial bearing based on super-
conductive material, and two sets of radial bearings, one upper and one lower, presently the
axial bearing and the lower radial bearings set have been replaced by mechanical devices,
while the upper bearing is still magnetic. This simplified structure was used in [4], where the
plant dynamics was modeled, and a control scheme based on LQR algorithm was obtained.
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Figure 2 Rotor geometry and stator windings

The same prototype was used by [3], with a decentralized PID control. According to the
modeling in [4], the basic rotor dynamic equation is:

Where the inertia matrix J0, the gyroscopic matrix Gr, and the angular coordinates vector z
and the external excitation vector er are given by

; ; ; .

The moments of inertia of the rotor are Ix = Iy = I and Iz; if m is its mass, then J = Jx =
Jy = I + m c2. The rotational speed is ωr and px,y are the external torques applied. Since α and
β are usually small, the angular coordinates in z can be replaced by the displacements at the
sensor level, zs , resulting in the following equation.

where the input vector u = [ix iy]
T stores the control currents imposed on the x and y

directions. The matrix coefficients are:

; ; ;

where the constants Kpb and Kib represent the linearization of the eletromagnetic restoring
force due to gap variations and excitation currents applied to the magnetic bearing, being γ
the gravity acceleration. Equation (14) can be written as a first order linear system by re-
definition of the variables, as

resulting in
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The blocks in the A and B matrices above are all 2 x 2 with A21 = Kzr - γrr , A22 = -Grr and
B2 = Kur.

Controller Performance – Simulations

Using the LASUP prototype parameters in the model presented above, and considering a
frequency of 120 Hz applied to the windings of the bearingless motor, the following values
are obtained for equation (16):

; ;

Two control laws were applied: a state feedback (u = Fc x) centralized LQR, and a
decentralized PID control. The LQR control structure was obtained using MATLAB lqr(.)
algorithm, resulting in the following feedback matrix F:

In the decentralized PID scheme, each direction x and y was treated as an independent
channel; it used a Simulink PID control block, with a compensator to implement derivative
action, in order to avoid amplifying noise. PID parameters were chosen to obtain stability,
without much consideration on performance characteristics. PID parameters are listed in
table 1. Both approaches were simulated, using Simulink.

Table 1 PID parameter values
Parameter Parameter value
Proportional gain 5000
Integral gain[sec-1] 10
Derivative gain[sec] 10
Derivative divider 100

Stochastic Performance Evaluation. The LQR controller was simulated for a 1 second,
with a sampling rate of 1 kHz. The time series obtained was fed to the armax(.) function of
MATLAB and the models obtained for channels x and y are shown on table 2. It should be
remarked that noise variance is also generated by this same armax(.) function.

Table 2 ARMA models for system outputs
Controller Channel G(z-1)

LQR

X

Y

PID

X

Y

Following [6], the impulse response is obtained from the ARMA transfer function by
continued division, resulting in the functions shown in table 3. The variances for x and y
were then calculated using MATLAB function var(.). Table 4 shows both noise variance and
output variances. Using expressions (9) and (10), σMV

2 and ξ were calculated. Those results
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are also displayed in table 4. The same procedure described above, was applied to the control
scheme using decentralized PID controllers, resulting in the following data displayed on
tables 2, 3 and 4.

Table 3 Impulse response

Controller Loop ψ(z-1)

LQR
X

Y

PID
X

Y

Table 4 Noise and output variances, performance indexes

Controller Loop White noise variance Output variance σMV
2

ξ

LQR X 4.3466e-012 1.8655e-011 4.35E-12 4.2885

Y 4.5369e-012 1.8844e-011 6.96E-12 2.7075

PID X 1.7521e-010 2.731e-08 7.61E-10 35.887

Y 1.8941e-010 2.7563e-08 1.78E-09 2.7075

By comparing the data shown on table 4, it is noticeable that the performance of the LQR
controller , for this specific plant dynamic, is better than the PID approach, at least for x,
since performance index is almost a decade smaller for the LQR case.
Frequency Domain Performance Evaluation. Based on [8], the plant model is driven by
pseudo random noise, applied to each input at a time; the time series obtained for x and y are
submitted to MATLAB oe(), as suggested in [8], in order to obtain the sensitivity transfer
function S. For the LQR controller applied to the bearingless motor model, the following
matrix S was reached:

This sensitivity matrix was submitted to MATLAB function sigma(.) in order to calculate
the singular values. Figure 3a shows the frequency response obtained. It should be noted that
the peak value is 0.6 dB for a frequency of 400 rd/s, indicating a reasonable disturbance
rejection figure. The same procedure was applied to the PID controller, resulting in the
frequency response shown in figure 3b for the singular value of the PID sensitivity transfer
function. The peak value obtained is 45 dB at a frequency of 350 rd/s, indicating a low
disturbance rejection figure.
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Figure 3a σ(S) for LQR controller Figure 3b σ(S) for PID controller

Controller Performance – Experimental Data

In order to check simulations results with experimental data, the bearingless motor prototype
was used to produce time series, with LQR and PID controllers. For this experimental tests
only the time domain performance evaluation was applied. The time series obtained was fed
to MATLAB generating models developed for channels x and y. The impulse response was
obtained from the ARMA transfer function, resulting in the functions shown in table 5.

Table 5 Impulse response
Controller Loop ψ(z-1)

LQR

X

Y

PID

X

Y

These results suggest that a delay b =2 should be considered. Finally, using expressions (9)
and (10), σMV

2 and ξ were calculated. The same procedure described above, was applied to
the control scheme using decentralized PID controllers, resulting in the data shown on table
6.

Table 6 Performance index
Controller Loop σMV

2 ξ

LQR X 0.0063 3.627

Y 0.00087 6.233

PID X 0.0072 6.299

Y 0.0033 10.69

By comparing the resulting performance index shown on table 6, the conclusion is that

the performance of the LQR controller, for the real plant, is better than the PID control

approach since its performance index is smaller.
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Summary

Considering the performance assessment criteria studied, it is clear that, for a real time
implementation, the time domain evaluation proposed by [6] and [7] is simpler to be
obtained and calculated, since it does not require a testing signal to be injected in the system
under evaluation, as well as because the algorithm requires a less sophisticated structure.
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