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Abstract: This paper presents a robust fuzzy logic-base control scheme for a nonlinear magnetic bearing
system that is subject to time delay in feedback loop. A new Takagi-Sugeno fuzzy model is proposed to
represent the nonlinear magnetic bearing. Base on the new fuzzy model, a PDC controller is designed in terms
of a proposed delay-dependent stability criterion which guarantees the asymptotic stability of the fuzzy model.
The results of simulation verify the effectiveness and superiority of the proposed method.
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Introduction

Active magnetic bearings (AMBs), which support rotors without any mechanical contact and
lubrication, provide the possibility for high-speed rotation of machines, and more and more
it inevitably requires the introduction of modern digital controller with high control precision
and advanced control strategies. However, new problems emerge unexpectedly as modern
digital controller is widely used in AMB systems. One problem is the unavoidable time delay
in the feedback loop of an AMB controller (e.g., network delay, computation time delay in
digital controllers) [1-3]. As magnetic bearings are applied to high-speed rotating systems,
and rotors vibrates in a synchronous frequency due to mass imbalance, these delays, which
are neglected in most systems, may approach to period of rotor vibration and have great
influences on dynamics of the system. Even though these delays are very small, they may
lead to oscillatory response of larger amplitude, and even cause instability of the whole
system [4, 5]. Therefore, it is important both in theory and practice to take the time delay
into considerations when designing a controller for an AMB system. But due to the inherent
nonlinearity of the AMBs, the stability analysis and controller design for a magnetic bearing
system with delayed feedback are difficult and still a challenge.
Time delay is a main source of instability and poor performance, which usually makes the
rotor supported by a magnetic bearing far away from the equilibrium point. Large vibration
of the rotor may yield great model errors for controllers that are based on the assumption
that the rotor oscillate in a small region and are designed by linearizing the dynamic of
bearing about a nominal equilibrium point[6, 7]. Recently, the rapid development of fuzzy
model-based control theory [8-17] provides the possibility to solve the control problem of
highly nonlinear systems like a magnetic bearing with time delay. Through a suitable fuzzy
system partitioning of the whole operation region of a complex nonlinear system, the
Takagi-Sugeno fuzzy model [18], which is comprised of a family of local linear models, can
provide a powerful solution for function approximation, stability analysis and controller
design of nonlinear delay system in view of fruitful control theory and technique for linear
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delay system. The stability and control design issues about T-S fuzzy model with time delay
can be classified into two categories, namely delay-independent criteria [8, 9, 14] and
delay-dependent criteria[10-13, 15-17]. The study in [11, 15] extended delay-dependent
approach to T-S fuzzy system with bounded time-varying delay. In [12, 13], stabilization
problems for the case of input delay were investigated, and observer-based PDC controllers
were successfully conducted.
In this paper, we considered the delay-dependent stabilization for a general nonlinear AMB
system with delayed feedback based on a new T-S fuzzy model. The parallel distributed
compensation (PDC) was adopted to synthesize a stable fuzzy controller, and the controller
design problem was then converted into a linear matrix inequality (LMI) problem. Finally,
the results of computer simulation verified the performance of the presented control strategy.

Fig 1: Current biased radial AMB

Fuzzy modeling of magnetic bearings

As shown in Figure 1, a typical 1-Dof AMB system consists of a stator and a rotor. A
magnetic field is created within the stator, rotor and the air gap between the stator and the
rotor when current flows in the coils that are wound around the stator. The dynamical
mathematical model considering time delay in feedback loop can be written as:
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where q denotes the displacement of the rotor, i denotes the input control current, and

T is time-varying feedback delay with T d  . k is the magnetic force constant; 0I and

i denote the bias and control currents, respectively; 0c is the nominal air gap between the

stator and the shaft; m is the mass of the rotor.
Taking the first order Taylor’s series expansion of the magnetic force ( , )F q i at the operating

points ( *, *)q i , and introducing new parameters:

0 0 0 0 0/ , / , , / , ( )x q c u i I t T t T           (2)

with 0 0 0( ) [ , ],t          yields

( *, *) ( *, *) ( ( )) ( *, *)x ux K x u x K x u u t t d x u       (3)

where the displacement stiffness xK and current stiffness uK can be shown to be given by
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Based on linearization of nonlinear model (1) as we described above, Hong[19] propose a
Takagi-Sugeno-Kang fuzzy model for a 1-DOF AMB system. A detailed introduction of the
fuzzy model is given in Section IV. Unfortunately, in Hong’s model, approximation accuracy
of nonlinear stiffness xK and uK , which take an important role in system stability and

dynamics, depends on number of operating points selected for fuzzy model. That is, it is
difficult to express a nonlinear AMB system precisely by using only several points. However,
adding more operating points leads to great computation burden for control algorithms based
on LMIs, especially for delay-dependent stabilization criterion proposed in section III. As a
result, we develop the follow fuzzy model:
First, we assemble the fuzzy linguistic rules for two special cases:

i ) The maximum value of uK occurs at 0u  and maxx x ,

ii) The minimum value of uK occurs at 1u  and maxx x ,

where maxx is the maximum vibration amplitude of the rotor that is limited by a touchdown

bearing.
Remark 1. For the sake of brevity, the above analysis are focused only on the region

max[0, ]x x , and control input u is restricted on [0,1] to keep system stable. The result is

also hold for max[ ,0]x x  , [ 1,0]u  since the dynamics of an AMB system is symmetric

about zero displacement.
Choosing the ( , )x u as the antecedent variables of the T-S fuzzy model yields:

PLANT RULE 1: IF ( , )uK x u PB

THEN 1 1( ) ( ) ( ( ))X t A X t B u t t  

PLANT RULE 2: IF ( , )uK x u PS

THEN 2 2( ) ( ) ( ( ))X t A X t B u t t  

where ‘PB’ denotes ‘Positive Big’, ‘PS’ denotes ‘Positive small’, [ ]TX x x  , ( ) ( ) iu t u t d 
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Then the membership function is designed as:
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Similar to ( ( ))( 1,2)ih t i  , we define ( ( ))iH t as

max
1 2 1

max max
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( ( )) , ( ( )) 1 ( ( ))
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x x

x x

K x K x u
H t H t H t
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and (3) can be written as:
2

1

[ ( ( )) ( ( )) ( ( ))]i ii i
i

H t A tX X h B u t t  


   (4)
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Then let us introduce the function ( ( ))i t  as:

( ( )) ( ( ))
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h

 






 
 

(as shown in Fig.2) (5)

Remark 2. It is not hard to verify that ( , )i x u is bounded on max[0, ]x x , [0,1]u .That is,

there exist constants ,i ia b ( i ia b ) such that ( ) ( , )i i it a b 

under max[0, ]x x , [0,1]u .Denote ( ) ( )i i it e t   where ( ) / 2i i ia b   .It is obvious that
2 2( )i ie t  1, 2i  (6)

Combine (4) and (5), we obtain the final output of the fuzzy system which is structured by
a set of linear parameter-varying systems as following:

2

1

( ( ))[ ( ( ))]i i i
i

h tX A X B u t t 


   (7)

where (1 ( ))i i iA t A 

Remark 3. Besides AMB systems, the fuzzy model design presented above fits other
nonlinear systems that satisfy two conditions as follow:

i) One of stiffness functions (e.g ,x uK K ) is bounded on nX  , mu

ii) ( 1,2)i i  is small enough to obtain proper control gains by solving LMIs

presented in next section.

Fig 2: Characteristics of i

Fuzzy Delay-Dependent stabilization

Observer Design. For an AMB system, only the displacement of the rotor is available to
measure by using position sensors, while the velocity is not obtainable. Therefore, it is
necessary to introduce an observer for unmeasured state x and design an output feedback
control law. First, submitting (2) to (1) with ( ) 0t  yields the dimensionless form of an

AMB model:

2 21 1
( , ) ( ) ( )

1 1

u u
x F x u

x x
k

 

 
  

 

 
  

 
 (8)

Then, a nonlinear observer is given as following:
x̂ l x   (9)

where l is constant observer gain to be determined and  satisfies:
2l F l x      (10)
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Let ˆe x x   denote the observation error. Therefore, we have:
( ) ( )

( )

e F lx
l lx lx

le





   

  

 

 

 (11)

which implies that the error e converges to zero with a proper gain 0l  .
Controller Design. For system (7), based on the parallel distributed compensation

(PDC), the following fuzzy control law is employed to deal with the problem of
delay-dependent stabilization. The PDC rules share the same fuzzy sets with the antecedent
parts of model (7) and can be represented as:

2

1

ˆ( ) ( ( )) ( )j j
j

u t h t K X t


 (12)

with ˆ ˆ[ ]TX x x 

For convenience, let ( ( ))i ih h t , ( ) ( ( ))j jh h t    and define [ ]T T
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.

Then, associated with the control law (12), AMB system can be expressed in the
descriptor form [20] as follows:
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By combining the descriptor form (13) and the corresponding LKF:
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(14)

we obtain sufficient delay-dependent conditions in the form of LMIs as follow:
lemma 1. Suppose that

0
,  are two given positive scalars, where 0  . System (13) with

is asymptotic stable for any 0 0( ) [ , ]t       , if there exist a scalar 0  , and common

matrices 0Q  , 1 0R  , 2 0R  ,
1 2

[ ]N N N   , 1

1

2 2

0
, 0

P
P P

P P
 

  
 

such that the following LMI (15)

and (16) hold:
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2

* 2
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(15)

, 1, 2,3i j 

1 0
T

R N
N Z
 

 
 

 

 
(16)

Proof: Proof is similar to [21,theorem 1],
Since ,is jsA K actually contains the designed variables jK and l , we next transform (15)

(16) to decoupled LMIs which gives the computation of jK and l .
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Proposition 1: Suppose that ( 1,2)i i  ，
0
 and  are given positive scalars and 0  . If

there exist scalars 0  , 1 0id  , 2 0id  , 0g  , 0q  , 1 0p  , 1 0r  , 2 0r  , 1 2 3 1 2, , , ,z z z n n and

common matrices 0Q  , 1 0R  , 2 0R  , 0M  , V , jL (j=1,2),
1 2

[ ]N N N , 1 2

3*

Z Z
Z

Z
 

  
 

, such

that the following LMI (17), (18)and (19) hold:
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then under the control law (12) with feedback gains jK and observer gain l given by
1 , /j jK L V l g  (21)

the fuzzy system (7) is asymptotically stable for any time delay 0 0( ) [ , ]t       .

Proof. Assume a scalar 0  ,letting
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where G is nonsingular and 0g  .

and submitting into (15) and after exchanges of rows and columns, yields the following
matrix:

0
*

ij ij



  
  

(22)

where
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1 11 11 0 11 11 21 0 21 11

0 31 0 11 21 21
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It is easy to verify that (22) holds for sufficiently small 0  when 0ij  and 0  .First,

assume that ij is negative definite:

1 11 11 0 11 11 21 0 21 11
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(23)

Let 1V G , pre- and postmultiply { }T T T Tdiag V V V V and its transpose to (23), and

apply the change of variables such that

j jK V L , 11
TV P V M , 1

TV QV Q , 11 1
TV R V R , 11 1

TV N V N , 21 2
TV N V N , 11 1

TV Z V Z ,

21 2
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TV Z V Z to get the following inequality:
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(24)

Replace iA with [1 ( )] [1 ( )]i i i i i iA t A e t A      and multiply both sides of (24) by vectors

ix ( 1,2,3,4i  ).If we define 1 1( ) T
i iq e t A x , 2 2( ) T

i iq e t A x , then we have the following inequality:

1
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where 1 1 0 1(1 ) (1 ) Z
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i i i i
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Since the conditions (6) can be replaced with the existence condition 1 0id  and 2 0id 

such that
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2
1 1 1 1 1 1

T T
i i i i id q q d x A A x  , 2

2 2 2 2 2 2
T T

i i i i id q q d x A A x  (26)

Applying the Schur complement to (25) results the first LMI (17)in Proposition 1.
The inequality (18) in Proposition 1 can be established by assuming  is negative
semidefinite:

1 0 1 1 2 0 21

0 3 0 1 2

2

2 2 0 0

* 2 2 0 0
0

* * 0

* * *

gl q n z p g gl n z
g z z r

q
r

  

   



        
      
 
 

 

(27)

and letting gl  .

Finally rewriting LMI (19) as:

11 11 21

1 1 2

11 21

1 2

31

3

0 0 0

* 0 0

* * 0 0
0

* * * 0

* * * * 0

* * * * *

R N N
r n n

Z Z
z z

Z
z

  

 



 
 
 
 

 
 
 
 
  

  

 



(28)

and pro- and post both sides of (28) by [ 1/ 1/ 1/ ]T T Tdiag V V V   , and after

exchanges of rows and columns, yields the LMI (19) and (20).This completes the proof.
By using the above results, a stabilizing PDC-type controller can be obtained directly by
solving those LMIs numerically using the interior-point algorithm[22].

Simulation

To verify the effectiveness of the proposed controller, numerical simulation is carried out.
Since the AMB-rotor system (1) usually operates at a high rotation speed, the harmonic
disturbance created by imbalance of the rotor is considered in this simulation with the form:

2( ) cos( )emcw T T   (29)

where ec and  are the eccentricity and rotation speed of the rotor, respectively.

The model parameters are selected as
2 20.00186 /k lb in amp  , 0.974  , 0 0.3I amp , 0 0.02c in , 20.0126 sec /m lb in  .

Note that if 0T  , then the system (1) is the same as one given in [19]. According to [19],
the fuzzy model for an AMB system is also constructed by linearizing (1) at several
operation points as described in Section II:

PLANT RULE i: IF 1
ix C and 2

iu C

THEN ( ) i ix t A x B u    1,2,3, 4,5i  (30)

where 1
1C ZE , 2 4

1 1C C PM  , 3 5
1 1C C PB  , 2 4

2 2C C ZE  , 3 5
2 2C C PB  , 0( ) ( ) iu t u t K  , and

0i iB K is a bias term resulted from model linearization.
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Fig 2: Membership Function

Differently from (7), the membership function in [19] is designed as follow:

1

( ( ) ( ))
( ( ))

( ( ) ( ))

ix iu
i r

ix iu
i

x u
g t

x u

 


 


 


 
(31)

where ( )i   is the grade of membership of the input variables as shown in Fig 3.

It was found that in the case of rotational speed 600 /rad s  and 0.001ec in , the

close-loop stability is guaranteed by the control law in [19] even when delay 3T ms  ,
which indicates that the effect of delay on system stability can be neglected when rotation
speed is low. However, in the case of 1100 /rad s  , the rotor lose stability when the delay
is larger than 0.12ms ,about 2.2% of rotor vibration period. Moreover, with increase of
rotation speed, the stability limit of time delay decreases dramatically. This emphasizes the
necessity of taking a consideration of time delay when designing a controller for a
high-speed AMB system.
To furthermore demonstrate the advantage of the fuzzy model proposed in this paper, we
apply the delay-dependent criterions proposed in Section III to fuzzy model (30) as a
comparison.
Setting is iA A  , is iB B  , js jK K  and solving the inequalities (15) and (16) with

0 209.4 /rad s  , 0.3  , 0 0.0523   (the maximum delay determined by lemma 1 is

0 0( ) / 0.5ms    ), yields a fuzzy controller based on model (30):
5

1

( ) ( ( )) ( )j j
j

u t g t K X t


  (32)

with dimensionless gains
 1 7.4456 4.1840K  ,  2 7.3495 4.1276K  ,  3 8.3809 4.6622K  ,

 4 12.5559 6.9962K  ,  5 16.3971 9.2713K 

Finally by using Proposition 1 with 0.3  , 1 0.1884  , 2 0.3726  , 0 0.052   (the

maximum delay is also 0 0( ) / 0.5ms    ) ,we obtain the control gain and observer gain for

controller (12):

1 [3.2716 1.9677]K  , 2 [14.2761 8.0413]K  32.3l  .

The simulation is carried out with the initial conditions 0 0.0002q in . Fig.4 shows the

transient responses of rotor trajectories in the case of 0.12T ms  under three controllers
mentioned above: controllers proposed in [19] without considering time delay,
delay-dependent controller given in (32) based on fuzzy model (30)and output-feedback
controller (12). It is obvious that controllers in both (32) and (12) can stabilize the system
when the stability limit of time delay is exceeded for the controller presented in [19].
Furthermore, based on the new fuzzy model (7), controller (12) indicates a better
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performance from not only the overshot but also the set time.

Fig. 4: The trajectories of the rotor motion for three controllers

It has been found that for controller (32), although delay-dependent criterion is applied, the
system becomes unstable when delay reaches 0.43ms, less than the designed maximum delay.
However, the close-loop stability is guaranteed by the controller (12) for any delay

0.5T ms  . The responses of two control laws for the case 0.5T ms  are shown in Fig.5.

Fig. 5: The trajectories of the rotor motion in the case of 0.5T ms 
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Conclusion

In this paper, the time delay problem in a nonlinear AMB system is proposed, and a
stabilizing fuzzy controller is designed to decrease the negative effect of the delay. The
nonlinear magnetic bearing is represented by a new Takagi-Sugeno fuzzy model, which is
structured by a set of linear parameter-varying systems and provides a good approximation
on stiffness functions. Then a fuzzy-model-based PDC controller is designed in terms of a
proposed delay-dependent stabilization criterion which guarantees the asymptotic stability of
the fuzzy model. The simulation results show that the designed controller provides not only a
wider range of stability boundary but also better performances. This indicates the
effectiveness of the proposed method.
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