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Abstract: In this paper, nonsymmetrical 12-pole (AMB12) magnetic bearings are analyzed. 3D Finite Element
Method (FEM) was used for the magnetic field computations and nonlinear boundary problem was investigated.
Discretization process is described for the AMB modeling, [5]. Research applies adaptation meshing method with
the aid of high-order finite elements.
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Introduction

Finite element analysis is used by most designers of electric machines to calculate integral
parameters of the magnetic field and for optimization of the magnetic circuit. Mesh density has a
critical influence on the solution of the magnetic field in nearly all cases of finite-element analysis.
Modeling errors which are involved in the discretization process are often called approximation
errors. These errors arise as a consequence of shape functions during modeling of physical
problems. They should be kept as low as possible in every finite-element analysis. In order to get
results that are close to exact solution, regions that are considered with special attention are the ones
in which the physical properties are non-linear. For example, the edges of iron parts have to be
discreted very carefully. The interface boundary equations and interior points of the nonlinear
material are prescribed before mesh generation with fine elements. At the refine discretization level,
new points are inserted into the domain of support of each vertex of error elements. Then the shape
of elements in these regions and their neighbors are controlled using VVoronoi schema.

In this paper, the influence of finite element discretization on the force and magnetic flux density
distribution for the 12-poles magnetic bearings (AMB12) is presented. The integral parameters, e.g.
magnetic force and the coil inductances have been also calculated.

Problem statement

FEM method is usually used for solving partial differential equations. Mesh generation technique
based upon the concept of the Delaunay partition offers numerous advantages. One of the elements
formed from the new triangles and their neighbors can be constructed with the aid of Delaunay’s
algorithm. The vertices of the new triangle defines the circumference. One of the properties of a
Delaunay triangulation is that the circumference of a Delaunay triangle does not contain another
Delaunay vertex in its interior. Hence, in the event that the fourth point of the quadrilateral is
located within the circle which diagonal must be swapped. Otherwise, no change in the data occurs.
In the event that the quadrilateral diagonal is swapped, it is necessary to check the new triangles
again for additional swaps. This procedure recurs until no more swaps are necessary. Mostly, the
best results in constructing the Delaunay triangulation are when we triangulate the entire objects
with its four corner vertices. For each of calculation subregions, the Delaunay triangulations have to
be generated separately for example, the ferromagnetic parts described by own
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magnetization should be discreted especially.. lostmcases they have a non-linear
magnetization curve [1].

The energy W and coenergy W’ densities of the daled system can be expressed as:
B

w= JPHdB (1)
,

w= [ BdH (@)
0

In the vertices of the generated elements of thehmihe unknown values of the magnetic

scalar potentia) and the vector electric potentidl were assumed. Sometimes, there are
subregions which are moving under operation. Famgde, in the magnetic bearings, the

rotor is moving. Its subregions could be describtti the equationH = -0Q(x,y,z) . The
magnetic scalar potentidl(x,y, z) is approximated by the combination of the lindaaze
function

Q(xy.2)=3a(x .2, 3)

The energy Iin the computational region can be tatled from:

W(Q(xY,2) =] (f HdBJdV +[(H,Qdr) (4)

while the functiovnacl) of the coenrergy could be espesl by

W'(Q(x, Y, 2)) = jﬁ BdH Jdv +[(B, Qar). (5)
vio r

After solving the problem for the partial differeaitequation, we can obtain many magnetic
field integral parameters: forces, inductances stifthess coefficients [3]. the virtual work
method is very efficient for the magnetic forceccddtion. It requires coenergy solutions for
e (6)
S $7§

In some cases, we can to modify this method witihgughe equations (4) and (5). The
virtual deformation of the discretization mesh edsts can be employed in calculations in
which the step by step virtual work method is uggddThis deformation could be achieved
as a result of virtual infinitesimal displacemeritsome nodes. Each of the virtual nodes
neighbored to the moving part is described by lomalordinates |, v, w), which are
transformed to global ones, (y, ). In this case, the approximate shapes functiothis

subregion for all of finite element volumei( ) of the rotor subregion is described as

_m'q(x, Yy, Z)dxdydz = ZJ-J.J-q(x, Yy, Z)dxdydz :Z jﬂq(x(u,v, w), y(u,v,w), z(u,v, W)) [|B| dudvdw

two different rotor position$ = -

(7)

where: q(Xx,Y,z Jdenotes any function;

V., V. are respectively the volumes of the real and virtlements
G| is the determinant of the Jacobean transformation

After the coenergy differentiation (Eq.5), we oht#he force
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F. =§SU(ZBdHJdV]+§S(Jr'(8n§2dl')j )

For calculation of the equation (8), some assumptitave to be made. The first one, is that
the virtual displacement doesn’t affect finite erhdisplacement in the calculated region
and into the subregion boundaries. The magnettetriof the magnetic materials has to be
neglected, also. Thus, the magnetic force can loelated from

)« (' o« [ * 0 [P
F, :a_SZHBdH dv, :a_sg\;[;quH []B|jdve :gvj;[a_sisdH []B|+£BdH aS|G|JdVe

eV,0

| | ©)
After some mathematical transformations, the oee-sirtual work method for the magnetic
force calculation can be expressed

406G - .
F, :Ze: Vj [— B'G 1¥DH + { BdH (G| %%|G|Jdve (10)

The mathematical review shows the influence ofrétszation mesh quality on the magnetic
force results.

Description of the magnetic bearing

In nonsymmetrical AMB12, the excitation winding swsts of 12 symmetric coils, each with
N=40 turns, [2]. The wounded excitation coils cread&x horseshoe electromagnets, which
creates four sections. They are situated in a visay makes it possible to excite four
independent fluxes. Each of them crosses two statbes. In order to determine the
accuracy of the results from the finite elementlygsia four different meshes has been used
for discretization of a quarter of 12-poles actmagnetic bearing. Its configuration with
coils is presented in Fig.1. The most important AMBiensions are given in Table 1.

b=y Table 1. Main AMB dimensions
stator Parameters Value [mm]
Stator outer 100
¥ diameter
iy =g, —i, ] & iy =igy +i, air gap 1
’ Rotor diameter 56
Stator length 56
Rotor length 80

Fig. 1 General configUration of 12-poles AMB

We calculated 4 variants of generation meshedhdP-poles AMB:

a) Mesh 1 consists of 27,385 elements. It is defa@simnets generated automatically
by the Delanuay method using the defined boundeatyden the regions only, Fig.
2a. The number of nonzero stiffness matrix eleméotsFEM was 37,275. The
convergence time after eight Newton-Raphson itemativas 66 seconds of CPU.
The mesh generation time was 54 s.
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b) Mesh 2 is discreted with 270,955 elements. This hmeariant contains of the
circumcircuit definition for the stator and rot@gions. The maximum edge length of
the tetrahedral element is defined by 10mm. Thecasptio for the edge length is 3.
The boundary problem characterizes with 375,311akbes and convergence time
510 [s] for tree Newton-Raphson iterations. Thehmgas generated in 265 seconds.

c) Mesh 3 consists of 471,443 elements. Additiondlg, mesh 2 was changed for air
gap subregion. The maximum edge length is 1mm. Tihuhe airgap subregion 2-
elements distance between the stator and rotoraalsisved. After mesh generation
(about 519 seconds), the field problem was solued with tree iterations in time
703 seconds.

d) Mesh 4 is divided into 810,330 elements. We upgtattee mesh 3 with the
maximum edge length 0.7 mm for the airgap subreg{®ig. 2b). The mesh
generation time was 1,060 seconds of the procets@. The solution of the
equation system with 1,100,046 variables, aftez MMewton-Raphson iteration was
achieved after 1,409 seconds of CPU time.

Y

Fig 2. Finite element mesh discretization: a) Mésh) Mesh 4
The boundary problems were solved on the INTEL XHEBM04 Workstation with 32GB of

RAM, and 1TB of RAID(0) hard drive matrix. Mesh geation and convergence times vs.
number of elements is shown in Fig. 3.
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Fig 3. Mesh generation and convergence times \yabeuof elements

It can be observed that the time discretizationtedsolution time increase faster for a large
number of elements (Mesh 4).
Field calculation results and the test result

Measurement accuracy of the flux density componestsoncerned with the
precision of the hall sensor positioning. We uskd measurement system with 8 hall
sensors. Linear characteristic of each sensor bwigtage has been included. The 10-bit
resolution of the A/Cconverter have been taken into consideration fer ftux density
measurement in two ranges af40mT and £100mT. The relative error of 2% was
determined for the tests.

The measurement line LN1 has been chosen in thgapitbetween stator and rotor
(Fig.5). The measured components of flux densityuithe the ones that are longitudingl B
and perpendicular Bto the main axis of symmetry (Fig.6).

measurement line LN1

section

Measurement
line LN1

________

Fig. 5. Line with the points in which the B compatsewere tested.
After solving the boundary problem, we can calaithie flux density values. It is performed

for several positions of the AMB rotor. In Fig. @wompare the computational results with
the measured ones.
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Fig. 6. Magnetic flux density distribution verseetangle degrees.

a) B, component, b) Bcomponent

The degrees in Fig.6 determine the angles betweeratius through the points at which the
B components have been measured and x axis. Theefigresents magnetic flux
distributions for the three discretization meshesdrawn. One ought to add that the mesh 1
and mesh 2 are not optimal for the field calculaio/Ne can see additional peaks inaBd
B; diagrams caused by the calculation errors. Theremre more than 100% of the real
value. The computational results for the discréibraaccording the mesh 3 are conformable
with the real changes of flux density. The caldolatvalues very fine mesh 4 are not
presented in the figures. They are very close ¢orésults obtained with the mesh 3. Thus
mesh 3 is the optimal discretization mesh for thklfanalysis of the presented object.

After the field computation we are able to comphte magnetic force on the AMB
rotor. The resulting force excited by the coils that ofegalong Y axis is presented in Fig. 7.
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Fig 7. Magnetic force vs. rotor displacement

The magnetic force is the integral parameter of fiedd. Thus it depends on the
discretization of the calculated area. However,itiegral parameters do not depend on the
discretization as strongly as flux density valuésy. 7 shows a comparison of the force
values calculated by the energy method with me&h@&sand 3. It is visible that the results
obtained from the meshes are close. Only the mesbliained with using the mesh 1 are not
sufficiently accurate. The coarse discretizatiom lsa used for the prediction of the force.

Conclusions
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The effect of mesh discretization on the magnétig fensity and force calculation for the
AMB have been discussed. The dependence betweeneti@afiux density distribution and
mesh density for discretization of the analysed a®vides the appropriate discretization
with the mesh density for a finite element moddie prediction of magnetic force in AMB
and in other bearings may be convenient to incateathe adaptive meshing algorithm. The
finest mesh ensures the best accuracy of flux tleasid magnetic force calculations in a
magnetic device. However, it results in the extehtimme needed for the computation.
Moreover, there is a need of an operating memotly high capacity. Due to addition of the
field values errors at the individual points of trealysed area the field integral parameters
can be determined for the more coarse mesh.
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