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Abstract: In this paper, nonsymmetrical 12-pole (AMB12) magnetic bearings are analyzed. 3D Finite Element
Method (FEM) was used for the magnetic field computations and nonlinear boundary problem was investigated.
Discretization process is described for the AMB modeling, [5]. Research applies adaptation meshing method with
the aid of high-order finite elements.
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Introduction

Finite element analysis is used by most designers of electric machines to calculate integral
parameters of the magnetic field and for optimization of the magnetic circuit. Mesh density has a
critical influence on the solution of the magnetic field in nearly all cases of finite-element analysis.
Modeling errors which are involved in the discretization process are often called approximation
errors. These errors arise as a consequence of shape functions during modeling of physical
problems. They should be kept as low as possible in every finite-element analysis. In order to get
results that are close to exact solution, regions that are considered with special attention are the ones
in which the physical properties are non-linear. For example, the edges of iron parts have to be
discreted very carefully. The interface boundary equations and interior points of the nonlinear
material are prescribed before mesh generation with fine elements. At the refine discretization level,
new points are inserted into the domain of support of each vertex of error elements. Then the shape
of elements in these regions and their neighbors are controlled using Voronoi schema.
In this paper, the influence of finite element discretization on the force and magnetic flux density
distribution for the 12-poles magnetic bearings (AMB12) is presented. The integral parameters, e.g.
magnetic force and the coil inductances have been also calculated.

Problem statement

FEM method is usually used for solving partial differential equations. Mesh generation technique
based upon the concept of the Delaunay partition offers numerous advantages. One of the elements
formed from the new triangles and their neighbors can be constructed with the aid of Delaunay’s
algorithm. The vertices of the new triangle defines the circumference. One of the properties of a
Delaunay triangulation is that the circumference of a Delaunay triangle does not contain another
Delaunay vertex in its interior. Hence, in the event that the fourth point of the quadrilateral is
located within the circle which diagonal must be swapped. Otherwise, no change in the data occurs.
In the event that the quadrilateral diagonal is swapped, it is necessary to check the new triangles
again for additional swaps. This procedure recurs until no more swaps are necessary. Mostly, the
best results in constructing the Delaunay triangulation are when we triangulate the entire objects
with its four corner vertices. For each of calculation subregions, the Delaunay triangulations have to
be generated separately for example, the ferromagnetic parts described by own
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magnetization should be discreted especially.. In most cases they have a non-linear 
magnetization curve [1].  
The energy W and coenergy W’ densities of the calculated system can be expressed as: 
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In the vertices of the generated elements of the mesh, the unknown values of the magnetic 
scalar potential Ω  and the vector electric potential T

r
 were assumed. Sometimes, there are 

subregions which are moving under operation. For example, in the magnetic bearings, the 

rotor is moving. Its subregions could be described with the equation ),,( zyxH Ω−∇=
r

. The 
magnetic scalar potential ),,( zyxΩ  is approximated by the combination of the linear shape 
function 
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The energy in the computational region can be calculated from: 
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while the functional of the coenergy could be expressed by 
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After solving the problem for the partial differential equation, we can obtain many magnetic 
field integral parameters: forces, inductances and stiffness coefficients [3]. the virtual work 
method is very efficient for the magnetic force calculation. It requires coenergy solutions for 

two different rotor positions 
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12

ss

WW

s

W
F

−
′−′

=
∆

′∆−=  (6) 

In some cases, we can to modify this method with using the equations (4) and (5). The 
virtual deformation of the discretization mesh elements can be employed in calculations in 
which the step by step virtual work method is used [2]. This deformation could be achieved 
as a result of virtual infinitesimal displacement of some nodes. Each of the virtual nodes 
neighbored to the moving part is described by local co-ordinates (u, v, w), which are 
transformed to global ones (x, y, z). In this case, the approximate shapes function in this 
subregion for all of finite element volumes (∑

e

) of the rotor subregion is described as  
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where:  ),,( zyxq denotes any function; 

eV , *
eV are respectively the volumes of the real and virtual elements 

G  is the determinant of the Jacobean transformation 

After the coenergy differentiation (Eq.5), we obtain the force 
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For calculation of the equation (8), some assumptions have to be made. The first one, is that 
the virtual displacement doesn’t affect finite element displacement in the calculated region 
and into the subregion boundaries. The magnetostriction of the magnetic materials has to be 
neglected, also. Thus, the magnetic force can be calculated from 
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After some mathematical transformations, the one-step virtual work method for the magnetic 
force calculation can be expressed 
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The mathematical review shows the influence of discretization mesh quality on the magnetic 
force results. 
 
Description of the magnetic bearing 
 
In nonsymmetrical AMB12, the excitation winding consists of 12 symmetric coils, each with 
N=40 turns, [2]. The wounded excitation coils creates six horseshoe electromagnets, which 
creates four sections. They are situated in a way that makes it possible to excite four 
independent fluxes. Each of them crosses two stator poles. In order to determine the 
accuracy of the results from the finite element analysis four different meshes has been used 
for discretization of a quarter of 12-poles active magnetic bearing. Its configuration with 
coils is presented in Fig.1. The most important AMB dimensions are given in Table 1. 
 

 
Fig. 1 General configuration of 12-poles AMB 

Table 1. Main AMB dimensions 
Parameters Value [mm] 
Stator outer 

diameter 
100  

air gap 1  
Rotor diameter 56  
Stator length 56  
Rotor length 80   

 
We calculated 4 variants of generation meshes for the 12-poles AMB: 

a) Mesh 1 consists of 27,385 elements. It is default mesh nets generated automatically 
by the Delanuay method using the defined boundary between the regions only, Fig. 
2a. The number of nonzero stiffness matrix elements for FEM was 37,275. The 
convergence time after eight Newton-Raphson iterations was 66 seconds of CPU. 
The mesh generation time was 54 s. 
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b) Mesh 2 is discreted with 270,955 elements. This mesh variant contains of the 
circumcircuit definition for the stator and rotor regions. The maximum edge length of 
the tetrahedral element is defined by 10mm. The aspect ratio for the edge length is 3. 
The boundary problem characterizes with 375,311 variables and convergence time 
510 [s] for tree Newton-Raphson iterations. The mesh was generated in 265 seconds. 

c) Mesh 3 consists of 471,443 elements. Additionally, the mesh 2 was changed for air 
gap subregion. The maximum edge length is 1mm. Thus, in the airgap subregion 2-
elements distance between the stator and rotor was achieved. After mesh generation 
(about 519 seconds), the field problem was solved also with tree iterations in time 
703 seconds. 

d) Mesh 4 is divided into 810,330 elements. We upgraded the mesh 3 with the 
maximum edge length 0.7 mm for the airgap subregion, (Fig. 2b). The mesh 
generation time was 1,060 seconds of the processor time. The solution of the 
equation system with 1,100,046 variables, after tree Newton-Raphson iteration was 
achieved after 1,409 seconds of CPU time. 

 

 
Fig 2. Finite element mesh discretization: a) Mesh 1, b) Mesh 4 

 
The boundary problems were solved on the INTEL XEON E5404 Workstation with 32GB of 
RAM, and 1TB of RAID(0) hard drive matrix. Mesh generation and convergence times vs. 
number of elements is shown in Fig. 3. 
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Fig 3. Mesh generation and convergence times vs. number of elements  
 

It can be observed that the time discretization and the solution time increase faster for a large 
number of elements (Mesh 4). 
Field calculation results and the test result 
 

Measurement accuracy of the flux density components is concerned with the 
precision of the hall sensor positioning. We used the measurement system with 8 hall 
sensors. Linear characteristic of each sensor output voltage has been included. The 10-bit 
resolution of the A/C converter have been taken into consideration for the flux density 
measurement in two ranges of mT40±  and mT100± . The relative error of 2% was 
determined for the tests. 

The measurement line LN1 has been chosen in the air gap between stator and rotor 
(Fig.5). The measured components of flux density include the ones that are longitudinal Bz 
and perpendicular Br, to the main axis of symmetry (Fig.6). 

Stator

`

Upper section

X

Right horseshou

measurement line LN1
αααα

measurement point

Y

Z
 

Fig. 5. Line with the points in which the B components were tested. 
 
After solving the boundary problem, we can calculate the flux density values. It is performed 
for several positions of the AMB rotor. In Fig. 6 we compare the computational results with 
the measured ones. 
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Fig. 6. Magnetic flux density distribution verso the angle degrees. 

a) Bz component, b) Br component 
 
The degrees in Fig.6 determine the angles between the radius through the points at which the 
B components have been measured and x axis. The figure presents magnetic flux 
distributions for the three discretization meshes are drawn. One ought to add that the mesh 1 
and mesh 2 are not optimal for the field calculations. We can see additional peaks in Bz and 
Br diagrams caused by the calculation errors. The errors are more than 100% of the real 
value. The computational results for the discretization according the mesh 3 are conformable 
with the real changes of flux density. The calculation values very fine mesh 4 are not 
presented in the figures. They are very close to the results obtained with the mesh 3. Thus 
mesh 3 is the optimal discretization mesh for the field analysis of the presented object. 

After the field computation we are able to compute the magnetic force on the AMB 
rotor. The resulting force excited by the coils that operates along Y axis is presented in Fig. 7. 

 
Fig 7. Magnetic force vs. rotor displacement 

 
The magnetic force is the integral parameter of the field. Thus it depends on the 
discretization of the calculated area. However, the integral parameters do not depend on the 
discretization as strongly as flux density values. Fig. 7 shows a comparison of the force 
values calculated by the energy method with meshes 1, 2 and 3. It is visible that the results 
obtained from the meshes are close. Only the results obtained with using the mesh 1 are not 
sufficiently accurate. The coarse discretization can be used for the prediction of the force. 
 
Conclusions 
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The effect of mesh discretization on the magnetic flux density and force calculation for the 
AMB have been discussed. The dependence between magnetic flux density distribution and 
mesh density for discretization of the analysed area provides the appropriate discretization 
with the mesh density for a finite element model. The prediction of magnetic force in AMB 
and in other bearings may be convenient to incorporate the adaptive meshing algorithm. The 
finest mesh ensures the best accuracy of flux density and magnetic force calculations in a 
magnetic device. However, it results in the extended time needed for the computation. 
Moreover, there is a need of an operating memory with high capacity. Due to addition of the 
field values errors at the individual points of the analysed area the field integral parameters 
can be determined for the more coarse mesh. 
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