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Abstract: In this paper an industrially recognized modal control approach, a linear-quadratic-Gaussian (LQG)
control, and an H∞ control designs are compared using automated weights tuning based on a genetic algorithm.
The robust stability analysis is carried out based on the uncertainty set, which comprises parametric and
nonparametric uncertainties. The uncertainty set is updated to be compliant with the measured frequency
responses of the test rig. The studied combination of the uncertainties proves too conservative for the direct
application in the H∞ control synthesis. However, a robust stability of the controllers synthesized using the
nominal plant can be verified using µ-analysis and the very uncertainty set that cannot be used for the controller
design directly. It is demonstrated that for the rigid rotor without strong gyroscopic coupling all of the control
approaches result in a similar performance. For the more slender rotor with an additional disc and the dynamics
dependent on the rotational speed the best results are achieved by the LQG and H∞ controllers. When no gain
scheduling is applied, the modal control results in the unstable system.
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Introduction

The literature provides a significant number of different linear control approaches when
applied
to AMB systems. The most straightforward methods include PID type controllers applied
locally for each bearing and separately for each bearing axis. Such a decentralized control
can be used in some applications fulfilling the ISO standards [1]. However, the centralized
control approaches provide higher performance capabilities [2], [3] and therefore they can be
applied to the systems which could not safely operate with the simple controllers. This
concerns the systems with a high gyroscopic coupling, high rotational speeds, operation in a
supercritical region, and strong disturbance forces, which require high disturbance
attenuation. With the centralized control approaches it is possible to better counter the effects
of certain imperfect or trade-off hardware configurations such as: non-collocation, noisy
measurements, reduced bias currents, low bearing capacities, and small clearances. With a
rapid development of the semiconductor industry, the powerful digital signal processors and
field programmable gate arrays are readily affordable and the lack of computational power is
no longer a decisive issue in the control algorithm selection.

The literature relating to AMB control does not provide objective comparison between
different centralized AMB control approaches. In particular, in [3], as the most feasible
controllers are introduced a modal control and an H∞ control. In [3], a linear quadratic
Gaussian (LQG) control is criticized as the one that does not feature appreciable advantages
over the modal control. A credible comparison between various control strategies is difficult
because of different tuning approaches. Manual selection of tuning parameters yields, in fact,
trial and error tuning. Lösch [4] provided a qualitative comparison of different AMB
controller design methods based on a literature survey. Grega and Piłat [5] presented a
comparison between two linear quadratic (LQ) controllers, which had hand-selected
weighting matrices. Jastrzebski and Pollanen [2] compared the centralized linear quadratic
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Gaussian (LQG) control with the decentralized PID and PI/PD structures. Most of the
literature, which describes the robust control of AMB rotor systems, employs ad hoc formed
uncertainties. Typically, the rotational speed is considered as an uncertain parameter [6].
Few studies analyzed in depth uncertainty specifications. Li et al. [7] applied v gap metric to
analyze uncertainty propagation for AMB rotor systems.

The motivation behind this work is to compare the application of the different control
approaches, such as the modal control (center of gravity control), LQG, and H∞ control, to
the AMB rotor system. Moreover, the feasibility of a detailed parametric and nonparametric
uncertainty set in the design and verification of the AMB control is studied.

The paper is organized as follows. First, the AMB system and its nominal and uncertain
models are introduced. Second, the different control design methods are discussed. Third,
comparison of the controllers and analysis of the results are conducted. Finally, the
conclusions and the outlook are given.

System Modeling

The case study AMB system is non-symmetric, current controlled, and non-collocated. The
rotor is of a long rotor type, which does not exhibit a significant gyroscopic effect (Fig. 1a).
The machine is subcritical. From the radial position control point of view, the measured
outputs are rotor displacements in two axes in two sensor planes and the applied control
signals are four control currents of two radial eight-pole magnetic bearings. The system
parameters are presented in Table 1.

In order to have comprehensive comparison of the controllers we introduce a second case
theoretical system. Namely, the finite element method (FEM) model (Fig. 2) of the first rotor
is modified. The rotor is made more slender and the coupling with the high diameter disc is
attached to one of the ends making the second rotor more flexible and more gyroscopic (Fig.
1b).

Figure 1: Campbell diagrams.

Table 1: Parameters of the case study systems

Parameter Rigid rotor Flexible rotor
Current stiffness and position stiffness 268 N/A and 992 N/mm
Rotor mass 46.2 kg 46.7 kg
Rotor transverse moment of inertia 4.8 kg·m2 6.41 kg·m2

Rotor polar moment of inertia 0.041 kg·m2 0.152 kg·m2
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Damping ratio of 1–3 flexible modes 0.0041, 0.0022, 0.0043
DC link voltage 150 V 300 V
Bias current and maximum currents 2.5 A and 10 A
Nominal magnetic air-gap length 0.6 mm
Bandwidth of the actuator 290 Hz
Sampling time and PWM delay 100 µs and 25 µs

Mode 1, f = 0.0 Hz

Mode 3, f = 0.0 Hz

Mode 6, f =260.3 Hz

Mode 8, f =539.0 Hz

Mode 10, f =951.8 Hz

Figure 2: Rotor FEM model.

The AMB parameters remain the same for the both cases. In the second case, finding the
controllers to stabilize the lightly damped bending modes is the significant challenge faced
by the engineer. The stiffness-proportional damping is assumed. Damping ratio coefficients
of the three bending modes are listed in Table 1.

For the model of the 1st physical system, the FEM model is tuned to better reflect the
results of an experimental modal analysis of the free-free rotor [8] and results of frequency
responses of the AMB levitated rotor. For each control input the actuator is modeled as a
second order system with a pulse width modulation (PWM) delay and a motion-induced
back electromotive force. The sensor model consists of third-order Pade rational
approximations of sensor delays and sampling delays.

The nominal plant model, which is used for designing the modal controller, comprises
the rigid rotor modes in the center of gravity coordinates and the first-order actuator model
that has the same bandwidth as a more detailed actuator model. The sensors are modeled as
gains. The nominal plant applied for the LQG control synthesis comprises the same rotor
model but with the position stiffness and gyroscopic couplings and the first-order actuator
model. The uncertain plant applied to H∞ control synthesis comprises the rigid body mode,
the first bending mode, uncertain rotational speed, and the first-order actuator. Finally, the
plant model used for validation comprises the three rotor bending modes, the aforementioned
detailed actuator model, and the detailed sensor model. It has additional outputs to monitor
voltage commands and rotor displacements at the retainer bearings. The additional inputs for
injecting disturbance forces are included.

The open-loop transfer function of the plant in the Laplace domain using the state-
variable form can be written as

    .
1

uIuy BACG


 ss (1)
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G(s) is a 4×4 transfer function matrix of the plant. u and y are the input vector and the output
vector, respectively.

Uncertainty Set. The set of perturbed plants is constructed as a tool for the robust
stability analysis and possibly control synthesis. The set is constructed using plant model,
which includes the following parametric (structured) uncertainties:
 position stiffness (±20%) and the current stiffness (±10%)
 cross-coupled stiffness (±2% with respect to the current stiffness and ±4% with respect

to the position stiffness)
 elements of the mass matrix (±2% for the parameters describing rigid body modes and

±3% for the parameters describing the first bending mode)
 damping of the first bending mode (±3%)
 sensor gains (±5%) and the location of sensors (±0.02m)
 electrical parameters (L: ±10%, R: ±10%).

The uncertain mode shape of the first bending mode is taken into account by introducing
a perturbed location of the position sensors for that mode. According to the calculated force
versus current characteristics of the studied radial bearings [9], the variations of the position
stiffness are greater than the variations of the current stiffness as a function of the rotor
position and the control current for the selected bias current. The uncertain cross-coupled
stiffness and the uncertainty levels associated with the bending mode are based on
suggestions provided by Li et al. [10]. The uncertainties in the modal damping and the modal
mass of the first bending mode are adjusted to reflect the measured frequency responses of
the test rig. The dynamic (frequency-dependent) uncertainties which result from the
structural mode detected on frequency responses of the test rig are lumped into a
multiplicative output uncertainty forming the perturbed plant

 GG oop ΔI w , 1o 


Δ . (2)

wo(s) is a scalar weight such as )ω()ω( oo ljw  for each ω that

  )ω(σmax)ω( 1
po jl  GGG , (3)

where


. and  .σ denote the H∞ norm and the maximum singular value, respectively.

Similarly, the uncertainty can be added as an input multiplicative one. Fig. 3. presents the
frequency responses of the corresponding uncertainty models, that is, the values of lo(ω) and 
of li(ω). They are computed by searching through a set of 100 perturbed plants. In Fig. 3. we
can see that the measured relative differences between the frequency responses and the
nominal plant are below the analytically computed values of lo(ω) and li(ω). Therefore, the
uncertainty set is feasible for the robust stability analysis of the closed-loop control systems.
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Figure 3: Maximum and minimum singular values of the nominal plant. The measured relative differences
between the frequency responses of the test rig and the nominal plant model are compared to the differences

obtained using the uncertainty set.

Control Synthesis

The traditional weighting in the LQG and the signal-based H∞ control schemes [11] includes
the weighing of the system inputs and outputs according to the expected relative signal
importance and frequency content. The selection of the suitable weights is not a trivial task.
In this work we apply a basic genetic algorithm (GA) to automate the control design based
on the following control design objectives: output sensitivity peek, input and output
disturbance attenuations, responses to the step disturbance and step reference position,
testing physical limitations for state variables (voltage saturation, clearance), and system
bandwidth. The LQG and the signal-based H∞ control used in this work are related. The
applied modal control also uses the LQG approach.

H-inf Control. In the general linear H∞ problem the goal is to find an admissible
controller K, if one exists, so that for γ>0

      γjωσ
ω




KP,FKP,F ll max . (4)

Where Fl is a lower fractional transformation equal to the closed-loop transfer function of
the system presented in Fig 4a.  is an upper singular value. The generalized plant P is
obtained by augmenting the signal weighting functions to the original plant. Additionally,
the inputs and outputs that correspond to the uncertain speed are also included. This way the
structured uncertainty is introduced to the system by a block Δ presented in Fig. 4b. The
signal weights Wd(s), Wn(s), Wi(s), Wu(s), We(s), and the weight for the reference tracking
Wref(s) are of the form

3

321
44)(

as
aasas




 IW . (5)

The state weight matrix Ws is in the form of a diagonal constant matrix, but for the signal-
based H∞ control problem it is left out from the scheme Ws=0. The other than the rotational
speed uncertain parameters can be also included into the Δ-structure, but the combination of
too many uncertain parameters leads to the conservative uncertainty representation. Such an
uncertainty set is not feasible for the synthesis of the practical controllers.
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Figure 4: (a) 2 degrees-of-freedom H∞ signal-based design problem. The vectors w1, w2, and w3 comprise the
input distortion signals, the output distortion signals, and the reference signals, respectively. The vectors v1 and

v2 are the weighted position reference signals w3 and the distorted sensor measurements, respectively. The
vectors z1 and z2 consist of the weighted system input signals and the weighted position error signals,

respectively.
(b) General control configuration. (c) Modal control. r is the vector of the reference modal positions.

LQG Control. The LQG problem can be cast as an H2 problem to the general control
configuration (Fig. 4a). The weighting matrices become the constant diagonal matrices of the
design parameters Wd=Rw

1/2, Wn =Rv
1/2, Wi=0, Wu =R1/2, We=0 and Ws=Q1

1/2. Rw is the
process noise intensity or covariance matrix. Rv is measurement noise intensity or
covariance matrix. R and Q1 are the control weighting matrix and the state weighting matrix.
For the LQG and for the modal control an input vector of reference signals r is added to the
first-order compensator forming 2 degrees-of-freedom controllers.

Modal Control. In the case of the modal control the controller variables are in the center
of gravity coordinates. The input and output signals are transformed in such a way that the
plant appears to be decoupled and each mode can be controlled separately [3]. The
gyroscopic term is also left out from the plant model. For the unsymmetrical systems the
decoupling is not ideal and the control requires a compensation for the off-diagonal terms in
the negative position stiffness matrix

inmdout
1

md
11

mcomp TKTCKBKK xxix   , (6)

where Tout and Tin are the transformation matrices applied to the outputs and to the inputs of
the controller introduced with the positive feedback. Kxmd is the bearing stiffness matrix in
the center of gravity coordinates that contains only the off-diagonal terms. In the resulting
system, we can independently design a controller for the each mode. This is carried out by
LQG control method. That way, it is possible to include an additional compensation of the
gyroscopic coupling in the very same fashion as the off-diagonal stiffness compensation
using the estimated velocities. The effective compensation can be realized when the number
of sensors and actuators equals to the number of controlled modes. However, the
compensation is not perfect because of the actuator and because of other differences between
the ideal and the physical plant. Non-perfect compensation can be verified by the following
inequality

  GTGTKTGT 
 11

outm
1

incomp
1

outm
1

in xI , (7)

where Gm is the ideal plant model in the center of gravity coordinates and G includes the
actuator dynamics.
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Objective Tuning Using the Genetic Algorithm. The problem of credible comparison
between the different control approaches and objective tuning can be alleviated by GA [2,12].
The GA searches for an optimal set of parameters of design weights taking into account the
norms of the specified closed-loop transfer functions and time responses. The cost function
(fitness function) that maps the chromosomes into the fitness values has multiple
performance indices pn:

 Minimize the sensitivity peak


 oSSM .

 Provide a high controller gain (a small maximum singular value of the sensitivity) at low
frequencies  )(oDC ωM S S , where 0ω .

 Provide a sufficient input disturbance attenuation (maximize the tolerated disturbance

forces)


 iifbi GSGSKTM .

 Provide a sufficient output disturbance attenuation (maximize the tolerated errors in the

measured displacements)


 ofbofbo SKSGKTM and check weather the physical

system limits (DC link voltage, clearances, control currents) are not violated.
 Minimize the value of γ in the case of an H∞ controller.
 Minimize the overshoot in the case of the step response for the reference signal; and

provide required rise time.
 Minimize signals amplitudes because of the step response for the disturbance force signal.

Kfb is the feedback path of the controller. The input sensitivity   1

fbi


 GKS I and the

output sensitivity   1

fbo


 GKS I . The output complementary sensitivity ofbo SGKT  .

The cost function is obtained as follows. First, the performance indices are evaluated using
the accurate validation plant model. Second, the performance indices are used to calculate
the corresponding normalized objective functions fn. Third, each objective function is
multiplied by the predefined weight wn, and they are added together resulting in the single
cost function





N

n
nn fwf

1

, (8)

where N equals to the number of the objective functions. The mating is carried out by the
means of mutation, uniform crossover, and blending. The mutation rate is 40%. The optimal
design is obtained after 40 iterations. The population size of the new synthesized controllers
in the each iteration is 30.

Comparison of Controllers

The closed-loop feedback systems are evaluated using a more accurate plant model and the
uncertainty set of the perturbed plants. The H∞ control is synthesized using the uncertain
speed where the nominal value is in the middle of the uncertainty range. The modal and
LQG controllers are synthesized for zero rotational speed. Table 2 presents the results of the
nominal and robust stability of the closed-loop control systems. The robust stability is
evaluated for the nominal speed ±5 Hz (no brackets) and again for the uncertain speed from
0 to 100 Hz (information in the brackets). The robust stability for an uncertain system is
computed using Matlab’s robuststab command.
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The calculated frequency response functions for the rigid rotor are presented in Figs. 5-6.
The calculated frequency response functions for the flexible rotor are presented in Figs. 6-7.
The sensitivity functions are evaluated at each operational point from 0 to 100 Hz and a
maximum is calculated using the whole frequency spectrum for each point. The weighted
unbalance responses are calculated for 100 g·mm coupled unbalance. The unbalance
response and the weighted sensor disturbance response are calculated for the displacement
limit on the safety bearings that equals to the half of the clearance, the control current limit
that equals to the maximum control current (7.5 A) and the voltage command limit that
equals to the DC link voltage. It is evident that such an unbalance is insignificant for the
tested rotors. The greater concern is the periodical sensor disturbance that can result from a
rotor run out or erroneous offsets in the position sensors. The values are calculated assuming
the measured position errors equal to 5% of the airgap (30 µm).

In the case of the rigid rotor, the compensation of the off-diagonal stiffness in the modal
control improves slightly the frequency responses. This improvement can be considerably
greater when crossing the critical speed compared to the non-compensated control. The
improvement is mostly because of the compensation of the off-diagonal stiffness. Adding the
compensation of the gyroscopic matrix, as it is described in the Control Synthesis section,
brings only the marginal improvement over the non-compensated control. The step responses
when applying the disturbance force to one of the axis at the one of the radial bearings at the
nominal speed are similar for all of the controllers because of the GA tuning.

In the case of the flexible rotor all the controllers are not robustly stable in the whole
range of the rotational speed. The modal controller looses its nominal stability for the
rotational speeds above 92 Hz. When applying a gain scheduling (GS) the controllers are
robustly stable when within their respective speed ranges for the speed from 0 rpm to 10k
rpm. However, the switching between the controllers can be problematic because of different
steady state gains of the GA tuned controllers. This can be overcome by a bumpless transfer
scheme [13] or by an interpolation. The H∞ controllers are tuned for 14 rotational speed
ranges and the plant model applied for the control design comprises the first and the second
bending modes. It can be seen in Fig 7d that some of the controllers require more design
iterations in order to decrease the sensitivity peak.

Table 2: Stability of the studied control systems.

Controller Stability of the rigid rotor system
Nominal Robust

Stability of the flexible rotor system
Nominal Robust

H∞ yes – full range yes (yes) yes – full range yes (no)
H∞ GS yes – full range yes
LQG yes – full range yes (yes) yes – full range yes (no)
modal yes – full range yes (yes) yes – from 0 to 92 Hz yes (no)
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Figure 5: Evaluation of the different controllers for the rigid rotor system.

Figure 6: Output complementary sensitivity.
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Figure 7: Evaluation of the different controllers for the flexible rotor system.

Conclusions

The comparison of the different centralized controllers was carried out for two different
AMB rotor systems. It was shown that for the studied rotors there are no significant
differences between the modal control, the LQG control and the H∞ control methods when
the GA-based tuning is applied. The H∞ control provides the best results in terms of the
frequency and time responses, but it is also the most costly solution for the digital
implementation.

The modal control is limited by the hardware configuration. The control of the flexible
modes cannot be achieved in the traditional AMB system with the two radial bearings.
Moreover, the perfect decoupling and compensation of the off-diagonal terms of the bearing
position stiffness matrix is not possible in the non-ideal system. The compensation of the
gyroscopic term is also limited as it has to rely on the estimator of the velocities when only
the position signals are available. For the studied systems, the most important advantage of
the modal control is a less computationally intensive implementation than in the case of the
centralized LQG and H∞ control.

It was shown that the detailed uncertainty set can sufficiently capture the plant
uncertainties and for that reason it can be used for the robust stability analysis. However, the
combination of the many uncertainties proved to be too conservative for the practical H∞

control synthesis.
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For the studied flexible rotor AMB system the robust control when using the constant
parameters of the controllers in the whole speed range was not achieved. The robust control
with a non-adaptive controller could be still possible for the relaxed performance objectives
in the GA tuning of that controller.

When the control of the flexible and gyroscopic rotors is required, the LQG and H∞

control methods could benefit from adaptive control schemes. The GS H∞ control provided
robustly stable system in the speed range where it was not achievable by the controller with
the constant parameters.
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