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Abstract: Accurately calculating and modeling of the flux linkage characteristics is a critical step in design and
analysis of optimal control strategies for Bearingless Switched Reluctance Motor (BSRM). But due to the
highly nonlinear characteristics of BSRM, it is very difficult to derive a comprehensive mathematical model to
satisfy the overall characteristics of the machine. To overcome this problem, in this paper, an edge finite
element method (EFE) based 3-D FEM and a new enhanced incremental energy method were utilized for
calculating the flux linkage characteristics; using the calculated flux data, an adaptive neural fuzzy inference
system (ANFIS) based flux model was developed. Simulation results are presented and compared with the
analytical nonlinear modeling method, which verified that the proposed model can modeling the BSRM more
accurately and adaptively.
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Introduction

Bearingless switched reluctance motor(BSRM) combines merits of switched reluctance
motor (SRM) and magnetic bearings, such as simple structure, ruggedness, robustness,
frictionless, non lubrication and fault tolerant capability, which making it more suitable for
high speed operation.

BSRM has two kinds of stator windings composed of main- and suspended windings,
which can produce the torque and radial force simultaneously. Due to the doubly salient
structure of the BSRM, in operation process, the flux varied periodically with severely local
saturation. The coupling between main- and suspended windings results in more complicated
distributions of magnetic field comparing to switched reluctance motor (SRM). Thus,
modeling of flux linkage characteristics of BSRM is by no means a trivial task.

Researches have been done for BSRM in linear mathematical model [1]. However, the
literatures investigating the nonlinear electromagnetism modeling of BSRM are less. Several
attempts have been made to model the nonlinear magnetic characteristics of the SRM. Some
are based on analytical model [2], which always suffers from lack of accuracy. While some
others based on finite element method [3]. Although to some extent accurate, are
complicated and time consuming. The capability to accommodate nonlinear modeling has
made artificial neural networks ideal candidates to solve this problem [4]-[6].

In this paper, a 3-D FEA model based on edge finite element method (EFE) was
developed for obtaining the distributions of SRM magnetic field, then the flux linkage
characteristics were accurately calculated using enhanced incremental energy method
(EIEM). In order to enhance modeling accuracy of the nonlinear flux linkage, an adaptive
neural fuzzy inference system is used for approximating, based on the calculated flux linkage
data. The developed model was validated via Matlab/Simulink. Simulation results show the
developed models based on ANFIS are more robust and adaptive.
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Basic Principle of BSRM

Fig.1 shows the A-phase winding configuration and the principle of radial force production
in BSRM. The motor main winding N, consists of four coils in series, and the radial force
windings Nsa1 () and Ns2 (8) consist of two coils each. The B-phase and C-phase winding
configuration is similar to that of the A-phase winding. The rotor angular position 4 is

Flux by 2-pole radial force Flux by 4-pole main
winding Ny, winding N,

Fig.1 A-phase winding configuration.

The symmetrical two-pole fluxes (the broken lines) produced by the radial force winding
current isa; break the balance of the symmetrical four-pole fluxes (the thick solid lines)
produced by the main winding current in,, Which results in the radial force F, acting on rotor
toward the positive direction in the a axis. A radial force F, toward the negative direction in
the o axis can be produced with a negative current is51. Moreover, a radial force in the g axis
can be produced by two-pole radial force winding current is,o. Therefore, radial force can be
produced in any direction, and this principle can be applied to the B and C phase. The radial
force can be continuously generated by three phases for every 15°, such as from the start of
overlap and up to the aligned positions.

3-D FEA Based On Edge Finite Element Method

As discussed in our past paper [1], three different 3-D Finite element methods such as DSMP,
MVP and EFE were investigated and compared, the results show that the EFE method has
highest computational precision comparing with other two methods, and the DSMP method
has the advantage of small computational scale, while the MVP method is not suitable for
3-D FEA. In this paper, for accurately calculating the flux linkage characteristics, the EFE
based 3-D FEA s utilized.

The EFE method takes line integral of magnetic vector potential along edge or magnetic
field intensity as the DOF. The DOF is always defined along the tangent direction of edge;
no restriction for vertical component is imposed on the interface.

Here, the linear integral of magnetic vector potential A along edge is chosen as the DOF

jNi-dlj={1 =) (1)
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where, Nj is the shape function of i-th edge. A can be expressed as

A:iMA 2)

where A, is the linear integral of A along i-th edge; ne is edge number of edge element e.
Therefore, the boundary value problem of BSRM with the FEE method can be obtained

(3)
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Based on EFE method, the 3-D magnetic density distributions are obtained. Fig. 2 shows
the flux density distributions on aligned position and unaligned position respectively.

@) (b)

Fig. 2 Flux density distribution (a) =0° aligned position; (b) #=-22.5° unaligned position

Calculation of Flux Linkage Characteristics

The enhanced incremental energy method (EIEM) was applied for calculating the dynamic
and static inductances in [7]. The results indicated that this method has a merit of high
precision and less calculation work. In this paper, the flux linkage of main- and suspended
winding were calculated by using EIEM.

The incremental energy of magnetic field can be obtained by integrating of flux density B
and incremental magnetic field AH

AW = [B(AH)V 4)
And the flux linkage can be defined as

wo AW, (5)

The computational results of flux linkage for main- and suspended windings are shown in
Fig.3.
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Fig. 3 The calculated flux linkage characteristics (a) main winding flux linkage; (b) suspended winding flux linkage

Modeling of the Flux Linkage Characteristics Based on ANFIS

As shown in Fig. 3, the flux-linkage appears to be a complex nonlinear function of both the phase current
and rotor position. Though accurately modeling of SRM is cumbersome, it can be grouped as function
approximation problems.

Adaptive Neural Fuzzy Inference System. The adaptive neural fuzzy inference system
(ANFIS) is implemented in the framework of adaptive networks using a hybrid learning
procedure, whose membership function parameters are tuned using a back-propagation
algorithm combined with a least square method, so ANFIS combines the benefits of BPNN
and fuzzy logic algorithm. ANFIS is capable of dealing with uncertainty and imprecision of
human knowledge, which has self-organized ability and inductive inference function to learn
from the data. Hence, it is no doubt an excellent function approximation tool.

ANFIS is a multilayer feed-forward network. Each node of the network performs a
particular function on incoming signals as well as a set of parameters pertaining to this node.
A simple multilayer architecture of ANFIS is shown in Fig. 4.

layerl layer2 layer3 layer4 layer5
B
. A W, _
I w, f;
A, v
B, -
0 < , B
8, il
X, X

Fig. 4 A simple multilayer architecture of ANFIS

ANFIS implements a first-order Sugeno-style fuzzy system, which can be expressed as

Rule i: If x is Aj and vy is B, then fi=pix+ q;y+r;.

where Aj and B; are the fuzzy sets in the antecedent, and p;, ¢; and r; are the design
parameters that are determined by the training process.

As shown in Fig.6, the ANFIS is formed with five layers. The detailed explanation of
each layer is as follows:
Layer 1: Every node i in this layer is a square node with a node function
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Oy = i (X,),1=12 (6)

OL; = Hg( 5 (X,), 1 =34 (7)
where xi(i=1,2) is the input of the node i; A; or By are the linguistic label correlated with
the node function. While Oy; is the degree of membership function of the fuzzy set A.
Usually we choose uai(x) to be bell-shaped with maximum equal to 1 and minimum equal to
0, such as

Hai (X) = eXp{ (%} } (8)

where (a; c;) is the parameter set. As the values of these parameters change, the bell shape
functions vary accordingly. In this paper, function (8) is chosen as the input membership
function.

Layer 2: Every node of this layer calculates the firing strength of a rule by multiplying the
degree of membership function. For instance

0, = pa (X)) % pgi (X,),1 =12 )
Layer 3: Every node in this layer is a circle node labeled N. The ith node calculates the ratio
of the ith rule’s firing strength to the sum of all rules’ firing strengths:

O, =w f=—M _ j=12 (10)
' W, + W,

Layer 4: Every node i of this layer is the adaptive node, the output is

O, =W, f, =W, (p;X, +0X, +1,),i =1,2 (11)

Layer 5: The node of this layer computes the overall output as the summation of all the
incoming signals.

_ zWi f,
Oy =) W, f, = i=12 (12)
: : Zwi
ANFIS LearningAlgorithm. In order to minimize the error between the ANFIS output and
the targets value, in this paper, a hybrid algorithm is employed, which is used for
identification of the premise and consequent parameters. In the forward pass of learning
algorithm, functional signals go forward till layer 4 and the consequent parameters are
identified by the least-squares (LS) estimator. In the backward pass of the hybrid learning
algorithm, the error rates propagate backward and the premise parameters are updated by the
gradient descent.
ANFIS Flux Linkage Model. As discussed above, modeling of flux linkage characteristics
can be grouped as a nonlinear function approximation problem. To solve this problem, an
ANFIS based approximator was adopt for modeling. The ANFIS under consideration has
two-input valuables rotor position (6) and current (i), and one-output valuable flux-linkage
(w). The input-output training data is based on the flux linkage characteristics obtained from
EMEI. The corresponding multilayer architecture of ANFIS is shown in Fig. 4, which is
composed of the parameters as listed in table.1.
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Table 1. The architecture and the training parameters of ANFIS model

Number of membership functions for each input 7

Number of fuzzy rules 49
Number of nodes 131
Number of linear parameters 147
Number of nonlinear parameters 42
Total number of parameters 189
Number of training data pairs 336

By using the hybrid learning algorithm, the error between the desired output y and the
actual output of ANFIS are evaluated until the estimation goal is reached. After training, the
mapping of the estimated flux linkage characteristics can be obtained.
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Fig. 6 The modeling results based on ANFIS (a) main winding flux linkage; (b) flux linkage obtained from
ANFIS model; (c) the estimation error

719




The Twelfth International Symposium on Magnetic Bearings (ISMB 12)
Wuhan, China, August 22-25, 2010

0.06
0.04
0.02

Estiamted g, /WB

Estimation error

Fig. 7 The modeling results based on ANFIS (a) suspended winding flux linkage; (b) flux linkage obtained from ANFIS model; (c)
the estimation error

The ANFIS modeling results are shown in Fig. 5-Fig. 7. Fig. 5 illustrates the self
adjustment process of the inputs membership functions. The mapping surface of estimated
flux-linkage of main winding and suspended windings are shown in Fig. 6(b) and Fig. 7(b),
which were compared with the real value, and the estimation error mapping surface are
shown in Fig. 6(c) and Fig. 7(c) respectively. It is clearly that the ANFIS model can
approximate the real flux characteristics with great accuracy. As compared with the
analytical nonlinear modeling method proposed in [8], the ANFIS model has many
comparable advantages in types of modeling performance, which is summarized in Table. 2
and fully verified this modeling algorithm.

Table. 2 Comparison of the analytical model and ANFIS model

Performance type Sub-regional model ANFIS model
Model free No Yes
Precision good Very good
Modeling complexity More Less
Memory requirement More Less
Time consuming More Less
Robustness Low High
Adaptability No Yes
Convergence rate Slow Fast
Generalization Good Very good
Summary

In this paper, the flux linkage characteristics of main winding and suspended windings were
calculated using EIEM by EFE based 3-D finite element analysis. Based on the calculated
data, an ANFIS based model for nonlinear modeling of BSRM is investigated. The modeling
results are presented and compared with the analytical methods, which indicated that ANFIS
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is an ideal candidate for accurately modeling the electro-magnetism characteristics of BSRM.
This will provide theoretical basis for the analysis, design and control of BSRM.
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