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Abstract: The stability margin of a two degree-of-freedom self-sensing AMB is estimated by means of μ-analysis.
The specific self-sensing algorithm implemented in this study is the direct current measurement (DCM) method.
Detailed black-box models are developed for the main subsystems in the AMB by means of discrete-time system
identification. Suitable excitation signals are generated for system identification in cognisance of frequency
induced nonlinear behaviour of the AMB. Novel graphs that characterize an AMB’s behaviour for input signals of
different amplitudes and frequency content are quite useful in this regard. In order to obtain models for dynamic
uncertainty in the various subsystems (namely the power amplifier, self-sensing module and AMB plant), the
identified models are combined to form a closed-loop LTI model for the self-sensing AMB. The response of this
closed-loop model is compared to the original AMB’s response and models for the dynamic uncertainty are
empirically deduced. Finally, the system’s stability margin for the modelled uncertainty is estimated by means of
μ-analysis. The resultant μ-analyses show that self-sensing AMBs are rather sensitive for variations in the
controller and the self-sensing module.
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Introduction

The de facto standard for robustness estimation in the AMB literature is the sensitivity
function ([1], [2], [3] and [4]). However, in [5] it is shown that the peak value of the sensitivity
function only gives a necessary (but not sufficient) condition for robust stability.

Alternative MIMO robustness estimation techniques that have been applied to AMBs
include the generalized Nyquist criterion [6], Kharitonov’s stability theorem [6] and the -gap
metric [7]. Of the available LTI MIMO robustness estimation techniques, μ-analysis promises
to deliver the least conservative estimates of the stability margin of an AMB system.

One of the lessons from [8], [9] and [10] is that accurate robustness analysis requires that
each of the constituent parts of a self-sensing AMB system be modelled accurately. A
fundamental prerequisite for μ-analysis is that the system under scrutiny be modelled with an
analytical LTI model. Fortunately, it is possible to closely approximate the oscillatory
behaviour of switching power amplifiers by means of LTI black-box models obtained via
system identification (if the order is chosen sufficiently high). Another advantage of system
identification is that it doesn’t have any trouble in modelling cross-coupling occurring in a
system. This is a huge benefit since electromagnetic cross-coupling also has a large effect on
self-sensing implemented on heteropolar AMBs ([11] and [3]).

Accurate μ-analysis requires accurate models of the nominal system as well as the
uncertainty to which the model is subjected [12]. For this reason system identification is also
applied to obtain accurate models for the dynamic uncertainty in the self-sensing AMB system,
but more of this later on in the paper.
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The rest of this paper is concerned with quick summaries of DCM self-sensing and
μ-analysis. This is followed by highlights of the procedure for obtaining accurate nominal
models for a self-sensing AMB by means of system identification. Finally, the results
that were obtained are discussed.

DCM self-sensing

This paper’s results are based on simulation studies performed with a reasonably accurate
simulation model of a two degree-of-freedom (2-DOF) DCM (direct current measurement
method) self-sensing AMB. More details on DCM self-sensing can be found in [13]. The
accuracy of this simulation model has been established in [3]. The above mentioned
simulation model consists of a PID controller, four power amplifiers, a magnetic circuit model,
point mass, an ideal position sensor (for the x-axis position) and the DCM self-sensing
algorithm (for the y-axis position). Two identical PID controllers (each responsible for
movement along one axis of freedom) comprise the controller, while each of the four stator
electromagnets is powered by its own two-state switching power amplifier. The flux
distribution in the AMB magnetic circuit is modelled by means of a reluctance network model
[14]. The response of the reluctance network model is enriched with two additional models:
one responsible for predicting eddy currents and the other for modelling magnetic hysteresis
and saturation. More details on the specific simulated AMB can be found in [15].

Summary of μ-analysis

Robust control theory is built on the notion of norm-bounded uncertainty [16]. This is a
frequency domain concept where the uncertainty surrounding a particular model can be
expressed by means of bounds on the norm of the model’s transfer function. The traditional
system blockdiagram can be rearranged to obtain the generalized form of Figure 1 [12].

In this block-diagram the controller is
represented by K, while the nominal model of
the rest of the AMB system is collected in P
(also known as the generalized plant).  is a
block-diagonal matrix that consists of
normbounded general uncertainties (scalars or
LTI transfer functions conforming to

respectively 1m and  


1)( jn
1).

The uncertainty matrix, , therefore represents
general uncertainties that can impact on the
parameters or dynamics of the nominal
generalized plant.

Figure 1: Generalized block diagram

1 Where the subscripts m and n refer to the corresponding elements in the block-diagonal matrix.

The degree to which the general uncertainties in  actually influence the self-sensing AMB
are determined by weights (whether scalar weights or weight transfer functions). These
weights are incorporated into the generalized plant P.
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(a) Response of a nonlinear 2-DOF AMB to a
frequency sweep

(b) Frequency-amplitude graph

Figure 2: Frequency induced nonlinearity

For the purpose of μ-analysis, the controller K can be combined with the generalized plant
P by means of a lower linear fractional transformation ([12]) to obtain Eq. 1.

11 12

21 22

N Ny u u
N

N Nz w w
        

        
      

(1)

The last step of μ-analysis is then to isolate the N11 component and to determine its
structured singular value (μ). If the peak value of μ( j)2 is less than one for all frequencies,
then the difference between one and the aforementioned peak value reflects the stability
margin of the system.

Modelling the nominal system via system identification

Accurate robustness estimates can only be obtained via μ-analysis if the nominal system is
accurately modelled by an LTI model. AMBs are however inherently nonlinear and time
variant. Through the use of differential driving mode ([17]) the behaviour of the AMB rotor as
a function of its position and the coil currents can be linearised over the greatest part of its
operating range [15].

The magnetic force exerted by an electromagnet is however not only a nonlinear function of
position and current but also of the frequency content of the position signal of the AMB rotor
([18] and [19]). Figure 2(a) reveals the specific nonlinear behaviour induced by the frequency
of the shaft position. This figure shows the simulated response of a 2-DOF AMB (with ideal
position sensors) for a reference position signal that consisted of a sine-wave frequency sweep
at a constant amplitude. The AMB’s behaviour may be classified into different regions of
operation, namely: regions A (linear), B (affine), C (nonlinear oscillatory behaviour) and D
(delevitation).

Accurate system identification depends on the quality of the excitation signal. An excitation
signal that gives rise to maximally informative input and output data is known as a persistently
exciting signal [20]. Due to the existence of frequency induced nonlinearities in AMBs it is
vital to ensure that nonlinear behaviour isn’t induced in the AMB by the very signal with

2 The structured singular value is also a function of frequency.
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which it is interrogated. By measuring the response of an AMB to numerous frequency sweeps
(of various combinations of the amplitude and maximum frequencies) and automatically
detecting the boundaries between the different regions of AMB behaviour ([15]), it is possible
to predict the degree to which an AMB will behave in a nonlinear fashion for various input
signals. An example of such a frequency-amplitude graph (obtained for a similar AMB
equipped with ideal position sensors) is shown in Figure 2(b).

To ensure LTI operation of the AMB, the frequency-amplitude graph advises that the
spectral composition of the excitation signals should be biased toward low-frequency
components rather than high frequency components. What is required is an excitation signal
whose spectral content can be constrained to be within a narrow band. Examples of such
signals are random phase multi-sine signals and rectangular waves.

AMBs are inherently unstable, which implies that system identification can only be
performed while the AMB is in closed-loop operation. This is known as direct closed-loop
identification [20]. In order to minimize distortion, the excitation signal must be injected as
closely possible to the specific module that is to be modelled [15]. In this study excitation
signals were therefore injected between the PID controller and the power amplifiers.

The weakest link in an LTI model for a self-sensing AMB is the power amplifier model.
This is because a switching power amplifier’s response is not only a function of the controller
output, but also of the actual position of the mass within the airgap. The LTI model of the
power amplifiers should therefore be an explicit function of all variables that have an effect on
the real coil currents, namely the outputs of the controller as well as the position of the rotor
within the airgap. The identified power amplifier model is therefore a four-input, four-output
discrete-time state-space model obtained via subspace parameter estimation [20]. Finally, the
rest of the AMB plant (the stator, coils and point-mass) is modelled by a four-input, two-output
model. (In contrast, DCM self-sensing is modelled by a SISO model, since the y-axis position
can be estimated solely from the maximum values of the current ripple on a single AMB coil
current signal.)

The de facto procedure in μ-analysis is to convert the discrete-time model to an equivalent
continuous-time model prior to calculating the values of μ. Since the latter conversion tends to
amplify any errors made during discrete-time parameter estimation by a factor approximately
equal to the sampling frequency [15] (which is 83.3 kHz), it is vitally important to obtain very
accurate discrete-time models for the various AMB sub-components.

Uncertainty modelling

The dominant contributor towards dynamic uncertainty in self-sensing AMBs is the
occurrence of nonlinear behaviour that can’t be modelled in the LTI paradigm. The process of
modelling this mismatch entails two steps ([21], [22]). Firstly, the ”difference” between the
model and real system is measured empirically. Secondly, the measured differences are
summarized by means of a simplified transfer function.

Assuming that the dominant cause of dynamic uncertainty in the AMB is due to unmodelled
high-frequency dynamics, the mismatch between the real system G(s) and its nominal model

)(sG can be modelled by means of additive uncertainty as follows [12]:

)()()()( ssWsGsG  , where W(s) represents the uncertainty weight transfer function.
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With the general norm-bounded uncertainty(s) constrained as follows:  


1)( j ,

the empirical transfer function estimate (ETFE) of the uncertainty weight for additive

uncertainty can be calculated from the following inequality:
)(

)(

)(

)(
)((

sX
sY

sX
sYsW  ,

where the spectra of the input and output signals of the real system are represented by X(s) and
Y(s) respectively. Similarly, the input and output spectra of the nominal model are given by

)(sX and )(sY respectively.

The second step of the uncertainty
modelling process entails summarizing the
ETFEs by means of analytical models. The de
facto practice in the literature is to fit a
smooth function which acts as an upper bound
to the measured frequency response [12], [22]
and [21]. Various means exist to accomplish
this purpose. One potential solution entails
finding a number of peaks in the ETFE and
connecting them with low order curves.
Finally, zeros and poles are iteratively added
in accordance with the well-known first order
asymptotic approximations for Bode plots
until the deviation between the observed
ETFE and the fitted function is below a pre-

Figure 3: Fitting a transfer function to an
ETFE

defined threshold. As an example, Figure 3 shows the results of the above mentioned
algorithm when applied to one of the SISO uncertainty weight ETFEs in the AMB plant
uncertainty model.

Results

Validation of the nominal model. The final nominal closed-loop LTI model of the 2-DOF
self-sensing AMB of this study consisted of the following discrete-time state-space models
([15]): a 9th order AMB plant model (4 inputs, 2 outputs); a 7th order power amplifier model (4
inputs, 4 outputs) and a 3rd order SISO model for DCM self-sensing. Figure 4(a) shows the
responses of both the original nonlinear simulation as well as the identified closed-loop LTI
model on the same data used for system identification. Clearly the identified self-sensing
model is at fault, drastically reducing the bandwidth and fidelity of the total closed-loop
system. Poor performance of LTI models for nonlinear systems containing “hard”
nonlinearities such as the maximum-operator used in DCM self-sensing ([3]) is however to be
expected.
Robustness analysis for parametric uncertainty in the controller. The 2-DOF selfsensing
AMB is controlled by means of two identical, decoupled PID controllers. The effect of
variability in the individual PD controller coefficients of a comparable 2-DOF equipped with
ideal position sensors is summarized in Table 1. Clearly, μ-analysis predicts that the AMB will
remain robustly stable for individual coefficient perturbations in excess of 80 % from the
nominal value. These predictions are however contradicted by Monte Carlo analyses
performed on both the identified nominal LTI AMB model and the original nonlinear
simulation model. These Monte Carlo analyses estimated the probability of instability for the
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stated allowable coefficient variability. It is clear from the Monte Carlo analyses that LTI
modelling gives an optimistic assessment of the system’s true stability margin. This error is
further compounded during μ-analysis.

(a) Performance of the nominal closed-loop
AMB model

(b) Uncertainty model for the self-sensing
module

Figure 4: DCM selfsensing

Table 1: Robustness analysis for controller parametric uncertainty in the sensed AMB
Deviation in

KP [%]
Deviation in

KD [%]
Peak value

of μ
Probability of

instability (LTI) [%]
Probability of instability

(nonlinear) [%]
80 0.1 0.34 12 37
0.1 80 0.56 11 33

The effect of parametric uncertainty in the PID controller coefficients of the self-sensing
AMB is summarized in table 2. Once again, μ-analysis is shown to be over-optimistic in its
robustness estimations. The results in Tables 1 and 2 however also show that DCM
self-sensing is more sensitive to variations in the controller parameters than normal AMBs.

Table 2: Robustness analysis for controller parametric uncertainty in the selfsensing AMB
Deviation in

KP [%]
Deviation in

KD [%]
Deviation in

KI [%]
Peak value

of μ
Probability of

instability
(LTI) [%]

Probability of
instability

(nonlinear) [%]
19 0.1 0.1 0.98 100 0
0.1 80 0.1 0.93 85 51
0.1 0.1 10 0.94 100 40

Robustness analysis for dynamic uncertainty in DCM self-sensing. The effect of
dynamic uncertainty occuring in the self-sensing module on the closed-loop system’s stability
margin can be assessed as follows. First of all a random-phase multi-sine signal (with an
amplitude of 100 μm and frequency content stretching from 5 Hz to 26 Hz) is applied to the
system input. From this excitation signal the additive uncertainty weight in Figure 4(b) is
estimated. According to the modelled uncertainty, the nominal LTI self-sensing model’s
primary shortcoming is its high-frequency behaviour.

Unfortunately the conservatism of μ-analysis requires that the fitted uncertainty weight
function be scaled down by a factor of 0.0012. The resultant μ-plot is shown in Figure 5(a).
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Even though a 2 Hz component isn’t visible in the uncertainty weight in Figure 4(b), this
component is the dominant factor in the μ-plot. From the μ-plot we can deduce that the
closed-loop system’s stability margin for dynamic uncertainty in the self-sensing module is
dominated by an extreme sensitivity for the critical frequency of the AMB plant. The
robustness of a selfsensing AMB for general dynamic uncertainty can therefore be improved
by better control at this frequency.

The LTI uncertainty model is however totally unsuited to analyse the effect of nonlinear
phenomena on the stability margin of the self-sensing AMB. This is once again proved by
applying a 99 μm amplitude frequency sweep signal stretching from 11 Hz to 50 Hz at the
system input. Neither the nominal LTI closed-loop model, nor the augmented model
(consisting of the nominal model and uncertainty weights) could correctly predict delevitation
(as can be seen in Figure 5(b)).

(a) μ-plot for dynamic uncertainty in the
self-sensing module

(b) Responses to a frequency sweep

Figure 5: Results

Conclusions

The fundamental issue at stake is the validity of modelling a mismatch between a nonlinear
system and an LTI nominal model by means of another LTI model (the uncertainty model). An
example of this problem is the inability of μ-analysis to predict delevitation due to frequency
induced nonlinearities in the AMB (e.g. in Figure 5(b)). Since the augmented model couldn’t
correctly model region B and C behaviour, the prime cause of the problem lies at the door of
the LTI uncertainty weight.

Nonetheless, the μ-plots obtained for dynamic uncertainty in the AMB are quite useful to
identify specific frequencies where the system is especially fragile.

Self-sensing AMBs are nonlinear multivariable systems. This paper has shown that a
linearization approach to the robustness analysis of this system isn’t sufficient. Accurate
robustness analysis requires accurate models of the nominal system and the expected
uncertainty. Further work should therefore be done on the development of an analytical
nonlinear model for a self-sensing AMB.
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