
ABSTRACT  
The purpose of this paper is to present a parameterized 
electromechanical model considering as well the 
electromagnetic nature of the forces acting inside a 
magnetic bearing as the general rotating machinery 
aspects, and their interactions.  This model takes 
particularly the effect of induced currents into account. 
The inductive and resistive effects, as well as the skin 
effect taking place in the bearing are considered.   The 
model is validated on an existing semi-passive magnetic 
bearing. 

I. INTRODUCTION 
Magnetic bearings can prove to be useful in various 
situations, like high-speed or vacuum applications 
where classical roller bearings reach their limits.  These 
bearings can be classified into different categories: 
active, passive or semi-passive. 

Good compromise between low cost and high 
performance can be achieved via a hybrid magnetic 
bearing [1]: some degrees of freedom being controlled, 
others not. 

However, studies have shown the onset of 
unexpected vibrations on semi-passive magnetic 
bearings [2].  They are unexpected because they take 
place after critical speeds of the system have been 
passed, and they are not due to gyroscopic effects.  To 
understand this phenomenon, we developed in [3] an 
electromechanical model based on the idea that the 
forces due to the interaction between the induced 
currents and the magnetic fields can be modeled by 
introducing damping into the mechanical equations 
governing the magnetic bearing motion. This model, 
whose principal lines are presented in this article, had 
already been validated in [3] on the basis of results 
obtained using finite element software on a simplified 

case modeled in 3D, and on experimental results for this 
simplified case. 

The first aim of this developped electromechanical 
model was to fully understand and explain the observed 
unstable behavior.  The second aim of this model is now 
to have a practical tool to design new stable magnetic 
bearings, or eventuelly to correct existing unstable 
magnetic bearings.  With this model, this can be done 
on the basis of a few experimental measurements, or on 
the basis of a finite element model of the bearing.  A 
macroscopic point of view is chosen on the 
electromagnetic phenomenon involved in the system, 
and there is no need to develop an often complex 
analytical solution for the magnetic and electric fields.   
The objective of this paper is to present some 
refinements made on the previous electromechanical 
model [3]: the damping coefficient representing the 
forces due to induced currents is not considered as 
constant anymore, it depends on the inductive and the 
resistive behavior of the conducting piece where the 
induced currents take place. Furthermore, the skin effect 
is taken into account.  And finally, a more advanced 
analysis of the stability conditions is made.  It is shown 
that the model predicts stable and unstable speed ranges.  
This electromechanical model is validated on an 
existing semi-passive magnetic bearing (Fig.1). 

 

 
Figure 1: Stator of semi-passive magnetic bearing 
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II. MODEL 
Magnetic bearings are electromechanical systems with a 
strong interaction between the electromagnetic aspects 
and the mechanical aspects. Therefore it is important to 
take both aspects into account when modeling the 
behavior of a magnetic bearing.   

First, a fast and general reminder of mechanical 
equations is exposed, showing that damping associated 
to rotating parts can generate an unstable behavior.  
Second, an electromechanical model is developed 
integrating as well the rotating modeling as the 
electromagnetic nature of the forces acting on a 
magnetic bearing. 

2.1 Mechanical approach 
When writing the mechanical equations of a system 
with a rotating shaft submitted to elastic and damping 
forces, it is important to look at the place where the 
damping takes place [4].   
Let us name: 

• cr , the damping coefficient associated with 
rotating parts of the system; 

• cnr , the damping coefficient associated with non-
rotating parts of the system; 

• k, the stiffness coefficient of the elastic force; 
• x,y, the position of the rotor in the plane 

perpendicular to the rotation axis; 
• z=x+jy, a complex notation used to express the 

position of the rotor and to write the equations of 
motion. 

The equation of motion of point mass, weighing m, 
and attached to a mass less shaft is then: 
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with ω the spin speed. 
The solution of this equation can be written in the 

form:  
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where λR and λI are the real and imaginary part of λ: 

 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+Γ+Γ−±

+

+⎟
⎠
⎞

⎜
⎝
⎛+Γ+Γ=

2

2

²
2

1
2

²
2

1

m
c

m
ccj

m
c

rnrr

r

ω

ωλ m
 (2) 

with: 

 ( )
2

2

4m
cc

m
k rnr +

−=Γ . 

The first solution corresponds to an always-damped 
backward whirl motion. It has a negative real part and 
an always positive imaginary part for λ. 

The second solution corresponds to a forward whirl 
motion, it has a positive real part.  It is only damped 
when the imaginary part of λ is negative, that is for a 
spin speed ω smaller than a limit spin speed ωlim given 
by: 
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When the spin speed ω is bigger than ωlim, the whirl 
motion is not damped anymore, but amplified, and the 
rotor undergoes an unstable behavior. When the spin 
speed increases beyond ωlim, the rotor never goes back 
to a stable behavior.  The more the ratio non-rotating 
over rotating damping is small, the more the limit spin 
speed is close to the critical speed.  

2.2 Electromechanical approach 
The electromechanical model presented in this section is 
based on the idea that the electromagnetic forces acting 
within a magnetic bearing can be modeled by 
mechanical components like springs and dampers. 
Indeed, on one hand, the reluctance forces can be 
modeled by stiffnesses, as they are proportional to the 
relative displacement. While, on the other hand, the  
Lorentz forces due to the interaction between induced 
currents, due to relative speed, and magnetic fields, can 
be modeled by introducing damping into the equations.  
According to the place where the eddy currents take 
place, they will be modeled by rotating damping (in the 
rotor) or by non-rotating damping (in the stator).  

However, these Lorentz forces can not be modeled 
by simply replacing the rotating damping coefficient by 
an appropriate constant in equation (1). Indeed, when an 
electromotive force is induced on a conducting piece, 
the currents generated consequently are subjected to 
inductive end resistive effects.  Since the Lorentz forces 
are proportional to the induced currents, and act in a 
direction determined by thesee induced currents, these 
forces are also subjected to these resistive and inductive 
effects.  These effects will be felt on the orientation of 
the force: the induced currents have a phase shift in 
regard to the electromotive force function of the 
inductive and resistive effects.  They will also have 
consequences on the norm of the force: the norm of 
these induced currents depends on the norm of the 
electromotive force trough the impedance, and then, 
trough the resistive and inductive effects. 

In order to quantatively formalize these effects, we 
will first consider that: 

• there are only eddy currents in the rotor; 
• the resistive effects taking place in the rotor can 

be represented by a global resistance R; 
• the inductive effects taking place can be 

represented by a global inductance L. 
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Next, we will introduce, as validated in [3], a 
complex rotating damping coefficient, rrr cjcc ′′+′= , 
where: 

• the real part, rc′ , corresponding to the  usual 
damping, can be related to the active power 
dissipated in the global resistance of the rotor; 

• the imaginary part, rc ′′ , can be related to the 
reactive power produced by the global 
inductance of the rotor. 

In a more rigorous way, this can be written as 
follow: 
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where θ, the phase shift between the electromotive force 
e and the induced current i, is given by:  
 ( )RLωθ arctan= . (5) 

Considering the global impedance of the rotor, the 
relation between the induced currents i and the 
electromotive force e is: 
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Finally, assuming that the electromotive force e is 
proportional to the spin speed ω, equations (4) to (6) 
lead to:  
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and cm a proportionality constant. 
In the particular case of a purely resistive 

conducting piece, where the inductance is zero, the 
damping coefficient is real and constant. 
 

Finally, by substituting the complex damping 
coefficient into the equations of motion, we obtain: 
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with: 
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The limit spin speed is then equal to: 
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with: 
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Let us note that equation (10) is a non-linear implicit 
equation since θ and cr depends on ω in a non-linear 
way. 

III. SKIN EFFECT  
One more remark has to be done on this model: the 
impedance R and L used in the electromechanical model 
could be considered constant if the skin effect is not 
predominant, but usually magnetic bearings are made of 
massive parts and spin very fast, and then, skin effect is 
not negligible.  The chosen law of evolution of the 
impedance with the frequency (spin speed in this case) 
is explained in [5]. The principle is based on a 
phenomenological approach. At low frequencies, the 
evolution law of the impedance is insignificant because 
skin depth is much higher than the characteristic 
dimensions of the system. 

This low-frequency impedance is equal to: 
 ( )intdclf LLjRZ ++= 0ω , (11) 
with Rdc the direct current resistance, L0 the inductance 
and Lint the internal inductance. 

At high frequencies, the skin effect is predominant 
and the frequency evolution of the resistance and the 
inductance is well-known. 

The high-frequency impedance is equal to: 
 ( )hfhfhf LLjRZ ++= 0ω , (12) 
with 
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At intermediate frequencies, it is supposed that the 
impedance is a combination of the low-frequency 
impedance (12) and the high frequency impedance (13) 
according to the following expression: 
 ( ) hflf ZgZgZ )()(1 ωω +−=  (13) 

The weighing function g(ω)  is equal to: 
 ( )βωγπω += arctan2)(g  (14) 
  

IV. STABILITY ANALYSIS 
First, let’s take a look at the stability in equation (1).  As 
said before there is one limit spin speed (3) beyond 
which there is no stable behavior possible anymore.  
The higher the rotating damping is, the lower the limit 
spin speed, as it is illustrated on figure 2.  It can be 
observed that the rotating damping, which is a non 
conservative force, has a destabilizing role.  When the 
ratio cnr  over cr tend to infinity (cr tends to zero), the 
limit spin speed tends to infinity too.  But when cr is not 
negligible, the behavior of the rotor is unstable beyond a 
finite limit spin speed ωlim. 
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Figure 2: limit spin speed for mechanical model for a 
given set of parameters in function of the rotating (cr) 

and the non-rotating (cnr) damping 
 

 
Figure 3: unstable speed range for a given set of 
parameters for the electromechanical model 

 
Concerning the roots of equation (6) however, it can 

be seen that they give a limited speed range where the 
behavior of the system is unstable.  Indeed, the spin 
speed can go through a region where the system is 
unstable, and afterwards go into a region where the 
behavior is stable. 
 

For instance, we can look at the instability region for 
a given set of parameters on figure 3.  It is clear on this 
figure that the instability region has a finite limit.  For 
instance, for a factor of proportion for the rotating 
damping cm worth 10, and a non-rotating damping cnr 
worth 0.1, the model predicts an unstable speed range 
from 4.16 rad/s to 86.85 rad/s.  On this figure, it is also 
observable that when the non-rotating damping 
increases, the instabilty region shrinks. 
 
 

 
Figure 4: limit spin speed and instability region in 

function of the inductance for a given set of parameters 
for the electromechanical model 

 

 
Figure 5: limit spin speed and instability region in  

function of the internal inductance for a given set of 
parameters for the electromechanical model 

 
We can further analyze the equations and see that 

obviously inductance is favorable to stability: on figure 
4, we see that when the inductance increases, the 
instability region shrinks. When the inductance is high 
enough, there is no instability anymore.  The 
interpretation of figure 5 is more complex: the weight 
low-frequency resistance decreases when the spin speed 
increases, and has no effect at high spin speed anymore. 

V. APPLICATION 

5.1. Magnetic bearing 
The studied bearings (figures 1 and 6) have been 
developed to be used in a flywheel energy storage 
system [2].  It is thus important for its energy 
consumption to be minimum.  They are semi-passive 
bearings.  The axial axis is controlled actively.  These 
bearings are used by pairs: the upper bearing pulls the 
flywheel up, acting against gravity, and the other one  
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Figure 6: schematic drawing of lower semi-passive 

magnetic bearing 
 

acts against the first one.  The coils allow controlling 
the magnetic flux circulating inside the bearing, so to 
stabilize the system.   At equilibrium, no current 
circulates inside the coils, and the position of the rotor is 
slightly closer to the upper bearing.  The passive axis is 
the radial axis.  The radial stiffness of the bearing is 
obtained through reluctance forces.  The teeth at the 
periphery of the bearing produce that reluctant force. 

 

5.2 Experimental setup 
The experimental setup consists of a milling machine, a 
force sensor with strain gauges and one magnetic 
bearing. 

The stator of the magnetic bearing is fixed to the 
machine frame via the force sensor. Indeed, by the 
action-reaction principle, the forces acting on the rotor 
of the magnetic bearing are equal but opposed to the 
forces measured on the stator.  The milling machine 
allows a precise positioning of the rotating part of the 
bearing with respect to the fixed part.  The milling 
machine can drive the rotor of the magnetic bearing to 
rotation speeds up to 6300 rpm.   

VI. ELECTROMECHANICAL MODEL OF THE 
BEARING 

6.1 Identification 
In the electromechanical model, the parameters are 
unknown.  First, an analysis of the physical 
phenomenon involved determines which parameters 
have to be taken into account, in the case of this semi-
passive magnetic bearing.  Then, the remaining 
parameters can be identified based on the experimental 
results for the forces exerted on the magnetic bearing. 

First, to identify the stiffness coefficient intervening 
in the model, we measure the forces for different off-
centred positions between the rotor and the stator when 
the rotating speed is zero.  This stiffness is easily 
identified by a linear approximation.  The average 
values of the stiffness in the x and in the y direction is 
worth 14024 N/m (Figure 7) for an air gap of 0.3 mm.  
Both stifnesses are a little different (13671 N/m, and 

14378 N/m) due to a possible slight misalignment 
between the stator and the rotor when in centered 
position, and between the milling machine axis and the 
sensor axis. 

Second, to identify the rotating damping and the 
impedance parameters, experiments have been made 
with the rotor fixed in an off-centred position 
(d = 0.5 mm), and the forces have been measured for 
various spin speed.  In this case, according to the 
electromechanical model (10), the forces are worth: 
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The stiffness force can be considered as an offset 
not varying with the spin speed, and is subtracted to the 
experimental measurements.  The other parameters can 
then be identified by the least square criterion. 
 
The values of the parameters after identification are 
given in Table 1. 
 
 

TABLE 1: value of the parameters for the magnetic 
bearing 

cm 0.32 
L0 1.1472 10-4 
Lint 0.0185 
Rdc 4.93 10-11 
α 0.0135 
γ 0.2278 
β 7.7421 10-12 
 
 

 
Figure 7: stiffness in the y direction of the magnetic 
bearing (air gap of 0.3 mm) 
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Figure 8: Experimental measurements and forces 

predicted by the parametrized electromechanical model 
for the force perpendicular to the relative displacement 

 

 
Figure 9: Experimental measurements and forces 

predicted by the parametrized electromechanical model 
for the force aligned on the relative displacement 

 
Let’s note that on Figure 8, Fx is not equal to zero  for a 
spin speed equal to zero.  This is due to the possible 
misalignment between the stator and the rotor when in 
centered position, and between the milling machine axis 
and the sensor axis.  This offset has been subtracted to 
the force for the identification. 

6.2 Comparison 
It can be seen on Figure 8 and 9, that the parameter 
identification allows the electromechanical model to 
predict the measured forces very well.  The evolution of 
the forces is respected on the whole speed range, and 
can predict the further evolution at higher spin speed. 
These parameters have been identified for one off-
centred position of 0.5 mm between the rotor and the 
stator, while they are supposing to vary with this 
position according to an evolution law that 
characterized a priori. 
 

VII. CONCLUSION 
A parametrical model has been presented representing 
the behavior of rotating systems submitted to 
electromagnetic forces, and especially forces due to the 
interaction of induced currents and magnetic fields.  The 
electromagnetic forces were represented by mechanical 
componenets like springs and dampers.  The inductive 
and resistive effects were taken into account by 
introducing a phase shift and a variable damping 
coefficient.  The skin effect was also taken into account 
by allowing the resistive and inductive effects to vary 
with the spin speed.  The parameters of the 
electromechanical model were easily identified, and 
show a good concordance between the forces measured 
on the bearing, and the forces predicted by the 
electromechanical model. 

This study should be completed by a finite element 
study of the electromagnetic bearing, but it can already 
be concluded that the assumptions on which the model 
are based are valid. 

The approach proposed via this electromechanical 
model allows to design or to work on existing bearings, 
and to predict their behavior without knowing the exact 
magnetic and electric field distribution. 
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