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ABSTRACT 
Control design of AMB rotor system demands very 
accurate system model. Modeling of the rotor is 
traditionally made using Finite Element Method (FEM) 
or Experimental Modal Analysis (EMA), but Active 
Magnetic Bearings (AMB) offer a possibility to obtain 
the model using system identification. The purpose of 
this study is to identify the flexible modes of the rotor 
and determine its transfer function model using complex 
lead and lag compensator structures. The results 
demonstrate that the proposed method suits for 
modeling the flexible modes of an AMB rotor system. 
 
INTRODUCTION 
The control of active magnetic bearing requires very 
accurate system model to operate reliably. Earlier it was 
widely thought that only the rigid modes would be 
sufficient to model the rotor. Nowadays the tendency in 
the industry applications is to reach higher integration 
and lower power consumption, which leads to rotors 
with flexible eigenmodes within the control system 
bandwidth. The modeling and control of these elastic 
modes take remarkable part of time, and hence cost, 
needed in AMB system design. [1] Traditionally the 
flexible eigenmodes of rotor are modeled either by 
mechanical hammer excitation or by FEM [2]. The 
mentioned methods are still in use but their results can 
be verified by system identification. This is done using 
the AMB with the rotor already installed and with 
existing AMB controller program. [1], [3] System 
identification is also suitable for fault diagnostics during 
operation. 

Since the parametric methods do not give correct 
poles for AMB system, nonparametric identification 
methods are used. The obtained nonparametric 
Frequency Response Function (FRF) is converted to 
parametric model, that is a transfer function model, 
using complex lead and lag compensator structures [4]. 
Major advance of the proposed method is a graphical 
presentation that makes it very illustrative and simple to 
use. 

MODELING OF AMB ROTOR SYSTEM 
Flexible modes of the rotor are typically modeled using 
modal coordinates. The equation of motion of an AMB 
rotor system with a constant rotation speed Ω in modal 
coordinates is 
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where M, D and K are diagonal mass, damping and 
stiffness matrices and G is a gyroscopic matrix of the 
rotor in modal coordinates. η is modal displacement 
vector, f is force input and z sensor output. Matrices Φ 
and Ψ are composed of the vectors ϕr,f and ψr,f that 
describe the displacements of eigenforms of the rotor 
from the sensor and actuator 
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Subscripts r and f refer to rigid and flexible modes. 
When considering a non-rotating rotor (Ω = 0), there are 
no gyroscopic effects and Eq. (1) simplifies to 
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State equation of the AMB system is 
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where the state matrices are 
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State equation (5) can be converted to transfer function 
matrix with equation 
 
 ( ) ( ) BAICh 1−−= ss . (9) 
 
Substitute the state matrices (6)-(8) to Eq. (9) to get the 
transfer function matrix of AMB rotor system 
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Mass-normalized coordinates are used, and hence mass 
is a unity vector M = I. Damping and stiffness matrices 
are 
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where p1,2 are poles and d1,2 dampings of the rigid body 
modes. ωp1 ... ωpn are natural frequencies of flexible 
mode poles and ζ1,...,n are damping ratios of the flexible 
modes. Substitution of Eq. (11)-(12) into Eq. (10) gives 
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where residual terms Rr and Rf are dyadic products [1], 
[5] 
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Eq. (13) is a parallel mode representation of the AMB 
rotor system. The same can be represented in serial 
mode, which is used further in the paper when 
converting the system FRF to a transfer function model. 
 
IDENTIFICATION 
AMB rotor system is a multiple input, multiple output 
(MIMO) system with four inputs and four outputs. In 
order to distinguish the influence of each input on each 
output, at least as many distinct measurements must be 
made as there are system outputs. In this paper the 
system is considered to consist of several single input, 

multiple output (SIMO) systems, for which the 
traditional identification methods are valid. 
 
Nonparametric methods 
Simplest nonparametric identification method of FRF is 
Empirical Transfer Function Estimate (ETFE) 
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where YN(ω) and UN(ω) are Discrete Fourier Transforms 
(DFT) of output and input, respectively, 
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and 1,,1,0,/2 −== NkNk Kπω . 

ETFE gives a good performance for periodic input 
signals, especially for those frequencies that are present 
in input. However, when the input signal is aperiodic, 
which is the case in most systems with disturbances, the 
ETFE gives only a very rough estimate. 

Systems with disturbances are better dealt with 
spectral analysis method where ETFE is smoothed using 
weighting functions. There it is assumed that the values 
of the true transfer function at different frequencies are 
related. The smoothed ETFE can be written as 
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where Wγ(ξ) is a weighting function or frequency 
window centered around the frequency ξ = 0. [6] 
 
Transfer function of identified system 
The frequency response obtained from identification is 
converted to transfer function for further use in 
controller design. For rigid modes, the a priori known 
model is used. For flexible modes the parametrized 
model is determined using complex lead and lag 
compensator method, where the suitable compensator 
structures are used for system modeling by matching 
their magnitude and phase shapes to the frequency 
response of the system [4]. 
 The resonance peaks of the flexible modes of AMB 
system cause narrow peaks and notches in phase curve. 
These shapes can be modeled with complex lead and lag 
compensators, for which the general transfer function 
can be written 

－616－



 

( ) 2
pp

2

2
zz

2

z

p
complex 2

2
ωζω
ωζω

ω
ω

++
++

=
ss
sssC . (19) 

 
The poles and zeros of such a compensator are 

complex conjugates with same damping ratio ζ, which 
leads to a symmetric phase lead or lag. 

Further only the lead compensator is considered, but 
the same holds for lag compensator. 

Eq. (19) represents a flexible mode component for a 
serial mode transfer function of AMR rotor system that 
can be used instead of the parallel mode transfer 
function of Eq. (13). 

One possibility to match the compensator transfer 
function into frequency response function shape, is to 
consider the width of the phase peak at half of the 
maximum phase lead. Figure 1 shows the Bode plot of 
complex lead compensator and some features related to 
the mentioned method. 

At first the phase lead of the compensator is 
determined. For a conventional lead compensator, the 
phase lead is φm, but for the complex one it is 2φm. 
Further the frequencies +

%50ω  and −
%50ω  at which the 

phase is one half of its maximum are determined. The 
frequency of maximum phase lead ωm is in geometric 
mean of the half phase peak frequencies 
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and the estimated damping ratio is 
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Now the compensator pole and zero are calculated from 
[4] 
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Model validation 
The validation of the obtained transfer function model is 
made by comparing its frequency response to the 
measured FRF and also to the FEM based model. 
 Additionally, the validity of the transfer function 
model is verified applying it to the frequency response 
curve of the known FEM based model and comparing 
the frequency responses and transfer functions of those 
two. 
 

 
FIGURE 1: Some features of Bode plot of complex 
lead compensator. 
 
Closed-loop measurement 
As mentioned above, the AMB system is inherently 
unstable, and the use of a feedback controller is 
essential when running the system. However, the 
identification methods are meant for open-loop transfer 
function, so the open-loop model have to be determined 
from the closed-loop model. A block diagram of the 
system G0 with feedback loop, disturbances and 
reference r are shown in Figure 2. 
Now there are three possibilities to determine the open-
loop transfer function G0. The first is a direct approach 
where system input u and output y are used as in open-
loop operation ignoring the feedback and the reference 
signal r. This is the best method, and its only drawback 
is that the disturbances must be well known. The second 
method is an indirect approach where the open-loop 
transfer function is determined from the closed-loop 
transfer function. In this method the controller must be 
known and it cannot contain nonlinearities. The third 
method is so called joint input-output identification that 
includes models for both input u and output y. The 
system input is 
 
 ( ) ( ) ( ) ( ) ( )tyqFtwtrtu y−+= , (24) 
 
where a non-measured disturbance in the controller w(t) 
is independent of reference r(t) and the measured 
disturbance v(t). Now input and output are [6] 
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FIGURE 2: Block diagram of closed-loop system with 
disturbances v(t) and w(t) and the reference signal r(t). 
 
If all the system and sensor noises are assumed 
negligible, the AMB system transfer function can be 
written as 
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which means that the open-loop transfer function of 
AMB system can be obtained from the closed-loop 
measurements using direct method. [1] 
 
RESULTS 
The flexible modes of AMB system for non-rotating 
rotor are determined by identification. There is no 
gyroscopic effect and thus no coupling between radial 
planes. Therefore is sufficient to consider only one 
plane of the system. 

Figure 3 shows the sketch of the rotor and the 
locations of the radial bearings A and B denoted by red 
stars. The green stars indicate the locations of the 
displacement sensors. The system also consists an axial 
bearing that is shown in the left end of the rotor. Also 
the mode shapes of the first three flexible modes 
determined by FEM, are presented in Figure 3. 
 
Measurements 
The A and B bearings are excited separately to avoid 
mixing of the excitation signals through the feedback 
branch. The excitation signal used in measurements is a 
sine sweep signal with an amplitude of 2 % of the 
maximum current. The frequency range of sweep 
signals is from 100 Hz to 1100 Hz. The radial rotor 
displacements and control currents are measured in both 
bearings A and B. 
In identification process, the actuator of the AMB rotor 
system is supposed to be known. Also the rotor mass, 
and the distances of the bearings and sensors from mass 
center, are known. Due to the highly unstable nature of 
AMB system, it is impossible to run it without feedback 
controller, and hence a simple lead compensator with an 
integrator, designed according to rigid rotor dynamics is 
used. Rigid rotor transfer function matrix based on FEM 
is 

Mode 1, f =260.3 Hz
Mode 2, f =539.0 Hz
Mode 3, f =951.8 Hz

end−A end−B 
 

FIGURE 3: Rotor model with the mode shapes of the 
first three flexible modes. [7] 
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Identification results 
The frequency responses of the plant from control 
currents icyA and icyB to displacements yA and yB are 
shown in Figure 4. Solid blue line is the measured FRF, 
dashed red line is the frequency response of the transfer 
function model obtained using the fitted complex lead 
and lag compensators (TF model) and bold and solid 
green line is the frequency response formed according 
to the results obtained with FEM. 

The FRF of the measured data is obtained using 
smoothed ETFE with Hamming window. The obtained 
transfer function matrix for first three (h11 and h12 only 
first two) flexible modes is 
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FIGURE 4: Identification results. Frequency response functions of AMB rotor system from control currents icAx and 
icBx to rotor displacements xA and xB. Solid blue line is the measured FRF, dashed red line is the frequency response 
of the transfer function model and bold and solid green line of the FEM based model. 
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Figure 4 shows that the identified transfer function 

model agrees quite well with the measured FRF with 
respect to the flexible modes. When comparing to the 
FEM based model, the poles are equivalent but the zeros 
differ, which is seen from Figure 4 and the transfer 
functions (34)-(37) and (33). 

Some eigenmodes, for example the second mode in 
h11 and h21, and the third mode in h11 and h12, do not 
excite very well, which can be seen from Figure 4. The 
reason for this is shown in Figure 3. 

According to Figure 3 the second eigenmode passes 
through the bearing A which affects to poor excitement 
of the mode in h11 and h21. Similarly, the third 
eigenmode has a node at the sensor A and therefore the 
mode is not observable from sensor A measurement. 

That is why the third mode is hardly noticeable in h11 
and h12. These will not cause problems in control 
because the modes can be filtered out. 

The bad quality of the identified FRF in some 
frequencies makes the determination of the flexible 
modes in these frequencies difficult. 

To verify the validity of the proposed method, it has 
been applied directly to the frequency response curve 
obtained with the known FEM based model. Figure 5 
shows the FRFs for the FEM based model and for the 
transfer function model reconstructed from the previous 
one. 

The corresponding transfer functions are 
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FIGURE 5: Verification of the proposed method using 
known FEM based model. The dashed red line is the 
frequency response of the calculated FEM based model 
and solid green line is the corresponding curve for the 
reconstructed FEM based model. 
 

Figure 5 and the transfer functions (38) and (39) 
show that the FEM based model and the model 
reproduced from that using complex lead and lag 
compensators correspond very well with respect to both 
poles and zeros. Thus can be concluded that the 
proposed method is suitable in determining a parametric 
model of AMB rotor system from the FRF. 
 
SUMMARY AND OUTLOOK 
A transfer function model of flexible modes of AMB 
rotor system was determined first by using 
nonparametric identification methods for obtaining the 
FRF of the system, and further by utilizing complex 
lead and lag compensator structures to construct the 
transfer function matrix. The validity of the method was 
demonstrated comparing the frequency responses and 
transfer functions of the measured FRF, constructed 
transfer function model and FEM based model. 
 It was shown, that the proposed method in 
constructing a transfer function model gives proper 
results. 

The identification provides effective system model 
that can be used to verify the original model based on 
FEM or EMA. System identification can also be used 
for fault diagnostics during operation. However, to give 
proper results, identification demands reliable 
measurement data with high signal to noise ratio. That 
did not realize in this examination. 

In future more reliable measurement data with higher 
signal-to-noise ratio would be obtained. The MIMO 
system identification methods will be utilized to better 
distinguish the influence of different inputs to the 
outputs. Also the sine sweep signal will be replaced 
with stepped sine excitation. 
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