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ABSTRACT 
A model of magnetic reluctance is considered in the 
frequency domain for cylindrical solid iron-cores when 
magnetic flux normally enters and leaves on the 
circumferential surface. To have an analytical model, we 
take a iron core that is sufficiently high to spread the 
magnetic flux over the circumferential surface and not out 
over the upper and lower ends. First, a three-dimensional 
distribution of the magnetic field is solved with Laplace 
transform. Then, the magnetomotive force between the two 
pole faces is obtained by a mean value along flux paths on 
the surface to describe the magnetic reluctance. The model 
given by Bessel functions is approximated in a simple form. 
The numerical result is compared with an experimental 
result to check the applicability of the model to actual cores. 
 
INTRODUCTION 
It is simple to apply the magnetic circuit theory to the 
dynamical model of magnetic actuators if the magnetic 
reluctances of the iron cores are known. In the actuators used 
for magnetic radial bearings, the magnet iron cores, for 
example, consist of a C-shaped core (stator) wound with 
magnet coils and a cylindrical core (rotor). It may be 
applicable a rectangular core model to the stator core [1,2]; 
but no model has presented to the rotor core.  
   The height (axial length) of the rotor core is near that of 
the stator core (the former may be slightly higher than the 
latter). Hence, the magnetic flux dynamically spreads over 
the upper and lower ends beyond the circumferential surface 
of the rotor core. For such a case, it seems difficult to obtain 
an analytical model of the magnetic reluctance; this is why 
we should consider the boundary conditions on both the 
circumferential surface and the upper and lower ends of the 
core. An analytical solution, however, may be possible 
without the ends. 
   Some experimental data show that the dynamic 

characteristics have little difference between the higher and 
lower cores. We can conclude that this fact is due to a similar 
effect of the ends to the circumferential surface. Hence, if we 
can obtain a model for an iron core sufficiently high enough 
to spread the magnetic flux over the circumferential surface, 
we may apply this model to actual iron cores. 
  In this way, we consider cylindrical solid iron-cores 
without upper and lower ends. First, we solve the 
three-dimensional of intensity with Laplace transforms and a 
Fourier expansion of boundary conditions. Next, magnetic 
reluctance is derived from the ratio between the magneto- 
motive force and the flux. The model described with Bessel 
functions is simplified in an approximated form. The 
applicability of the model is checked with experimental 
results. 
 
SYMBOLS 
 a : Width of pole leg 
  b : Height of pole leg 
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 H r ,Hq  , H z : Magnetic intensity 
 hr ,hq ,hz : Normalized Laplace transform of H (:, t )  

  j = -1 : imaginary unit    
  m , n : Natural integer 

  pn =
p

2q2
(2n +1)  

 qm =
p

2zm
2m +1( )  

  R1 , R2 : Inner, Outer radius of iron core 
 s : Variable of Laplace transform  
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  zm : Distance of spreading of magnetic intensity  
 a 2 = ms s  
  bm

2 = a 2 + qm
2  

 m : Permeability of iron core 
 m0 : Permeability of air (4p ´10-7 H/m) 
  q1,q2 : A half of the angle between inner, outer sides of 
pole legs  
 s : Conductivity of iron core 
 
MAGNET CORE AND ASSUMPTIONS 
 
Electromagnet and Iron core 
Figure 1 shows the iron cores in the construction of an 
electromagnet; the outer, C-shaped iron core with 
rectangular pole legs is wound with magnet coils and the 
inner, cylindrical solid iron-core faces to the outer core with 
working air-gap. The magnetic flux enters the circum- 
ferential outer surface of the inner core, pole face, passes 
through circumferentially and goes out from the other pole 
face. The final object is to formulate the dynamical model of 
the magnetic force between the two iron cores; then, the 
primary subject is to model the relation between the 
incremental magnetic flux and the coil current.  
   A simple way to analyze the magnetic system is the 
application of the magnetic circuit theory. We consider that 
the electromagnetic system consists of the magnetic flux 
path that is a series connection of four paths in the inner and 
outer cores and in the two air-gaps. Then, we need the 
magnetic reluctances of the flux paths. Since the magnetic 
force varies with the coil current, the air-gap changes; hence 
the incremental magnetic force is a function of both the coil 
current and the air-gap length. If those increments are 
sufficiently small, then the linearized incremental force is 
given by the sum of the two incremental parts. The part of 
coil current is modeled with fixed air-gap; the part of air-gap 
length can be derived from the former result [2].  
 
Experimental Data and Model Simplification  
The outer core is made of laminated steel stacks of 0.2mm 
thick to exclude its dynamic characteristics and a =12mm, 
b =10mm, q1 =18.5deg. and q2 =41.5deg. The working 
air-gap is set to 1.0mm. A search coil of four turns is wound 
around the pole legs (two-turns in each) near their pole faces   
to detect the time-derivative of incremental flux to the coil 
current. Frequency response of the incremental flux is 
calculated by multiplying 1/ j2p f ( j  is the imaginary unit 
and f is frequency) to the frequency response of the 
time-derivative.    
   The inner core of R2 = 29mm is made of soft iron. To 
examine effects of the height, are selected 10 and 20mm: the 
same and twice as the outer core. The inner radii of 9.5 and 
20mm are examined to see another effect. The bias coil 
current is 1.5A (flux density of 0.18T); the input voltage to 
the power amplifier with current feedback is sinusoidal 
functions with amplitude of 35% of the bias input. Figure 2 
shows the frequency characteristics of the incremental flux 

 

 

  

FIGURE 1: Magnet iron cores  
 
 

  
FIGURE 2: Frequency characteristics of incremental 

magnetic flux to coil current 
 
 
to the coil current from 2.5Hz to 600Hz. We see that the 
difference due to the inner radius is negligible small, and that 
the effect of height is dynamically negligible small although 
the static gain is different.  
   Those results suggest that the upper and lower ends have 
a similar effect to the circumferential surface on the 
dynamics of the flux distribution, and that the range of the 
effective flux distribution is restrictive. This supports a 
simplification of modeling that we consider a core without 
ends.  
   
Assumptions in Modeling   
The assumptions and conditions for simplification are as 
follows: 
 (1) The cylindrical core is sufficiently high (axially long). 
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 (2) Magnetic constants are uniform and constant. No 
magnetic saturation. 
 (3) No flux leakage. 
 (4) The fringing effects are neglected. 
 (5) The magnetic intensity is uniform and normal to the 
pole surfaces.  
 (6) Magnetomotive force on the surface is equal along any 
path between the two centering points of the pole faces.  
 
EQUATIONS OF MAGNETIC FIELD   
We take the coordinate system as in Figure 3: the origin at 
the intersection of the central axis of the inner core with the 
radial, central cross section of the outer core; the r axis in 
the radial direction; the q axis in the circumferential 
direction with zero at the axial, central cross section of the 
outer core; and the z  axis in the axial direction. Magnetic 
intensityH involved is described with those notations. The 
intensities are functions of r ,q , z and time, t ; those   
arguments will be often omitted for simplicity.  
 

 

 

 
FIGURE 3: Coordinate system of high cylindrical core 

 
 

Constraints and Boundary Conditions 
The functions of the magnetic intensities are guessed in their 
form as follows: 
 (1) H r  is odd for q , but even for z . 
 (2) Hq  is even for q and z .  
 (3) H z  is odd for q  and z . 
   We give the boundary conditions as 

H r R1,q, z, t( )= 0             (1) 

 

H r R2 ,q, z, t( )=
-H0 (t ), -q2 £ q £ -q1

0, -q1 < q < q1

H0 (t), q1 £ q £ q2

ì

í
ï

î
ï

, 

 - b
2
< z < b

2
               (2) 

H r R2 ,q, z, t( )= 0 ,   z >
b
2

         (3) 

where H0 (t )  is the intensity assumed to be uniform on the 
surface. Assumption (6) is expressed as that the following 
function is constant for arbitrary zc . 

     Fm = H z (R2 ,-qc , z, t )
0

zcò dz  

       + Hq (R2 ,q, zc , t )
-qc

qcò R2dq  

            + H z (R2 ,qc , z, t)
zc

0
ò dz ,   

qc =
1
2
q1 +q2( )               (4) 

 
Fourier expansion of Boundary Conditions 
We write eqs. (2) and (3) as 

        H r R2 ,q, z, t( )= H0 (t)g(q ) f (z)          (5) 

Then, we select the functions g(q )  and f (z)  as in 
Figures 4 and 5. Function g(q )  is expanded to the Fourier 
series with period 4q2  as  

g(q ) @ cqn
n=0

¥

å sin pnq( ), 

cqn =
4
p

cos pnq1( )
2n +1

,  pn =
p

2q2
(2n +1)    (6) 

 
 

 
FIGURE 4: Circumferential function of Fourier expansion  

 
 

 
FIGURE 5: Axial function of Fourier expansion  
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In Figure 5, zm  is a distance of the distribution of the 
magnetic flux. This is unknown now; a way of its estimation  
will be discussed later. Function f (z)  is expanded with 
period 2zm  as  

            f (z) @ czm cos(qmz)
m=0

¥

å , 

    czm =
4
p

sin qm
b
2

æ
èç

ö
ø÷

2m +1
,   qm =

p
2zm

2m +1( )  (7) 

 
Equations of Intensity 
If the magnetic constants, m and s , are uniform and 
constant, we have the following equations [4,5] 

   Ñ2H r -
1
r2 H r -

2
r2

¶Hq

¶q
= ms

¶H r
¶t

    (8) 

  Ñ2Hq -
1
r2 Hq +

2
r2

¶H r
¶q

= ms
¶Hq

¶t
    (9) 

  Ñ2H z = ms
¶H z

¶t
             (10) 

1
r

H r + r ¶H r
¶r

+
¶Hq

¶q
æ
èç

ö
ø÷
+
¶H z

¶z
= 0     (11) 

where 

  Ñ2 =
¶2

¶r2 +
1
r
¶
¶r

+
1
r2

¶2

¶q2 +
¶2

¶z2      (12) 

Equation (11) is the continuity equation of the flux density.       
   Variables H r  and Hq  are simultaneous in eqs. (8) 
and (9). Equation (10) of H z  is independent of the others.  
If we substitute the term ¶Hq / ¶q  obtained from eq. (11) 
into eq. (8), we have the equation excluding Hq  as 

Ñ2H r +
2
r
¶H r
¶r

+
1
r2 H r +

2
r
¶H z

¶z
= ms

¶Hr
¶t

 (13) 

Hence, it seems simple to solve eq. (10) first, and then to 
solve eq. (13). In this case, we can obtain a solution of Hq  
from eq. (11) without solving eq. (9).  
 
Solution with Laplace Transform 
We use the Laplace transforms of the variables with their 
initial values of zero as    

H r r,q, z, s( )= H0 (s)hr (r,q, z, s) ， 

Hq r,q, z, s( )= H0 (s)hq (r,q, z, s) ， 

H z r,q, z, s( )= H0 (s)hz (r,q, z, s)     (14) 

where H0 (s)  is the Laplace transform of H0 (t ) .Then, 
eqs. (10), (13) and (11) are transformed to 

¶2hz

¶r2 +
1
r
¶hz

¶r
+

1
r2

¶2hz

¶q2 +
¶2hz

¶z2 -a 2hz = 0   (15) 

¶2hr

¶r2 +
3
r
¶hr
¶r

+
1
r2

¶2hr
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¶z2 +
1
r2 -a 2æ

èç
ö
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hr  

  = -
2
r
¶hz

¶z
    (16) 

1
r

hr + r ¶hr
¶r

+
¶hq
¶r

æ
èç

ö
ø÷
+
¶hz

¶z
= 0     (17)  

where 
                a 2 = ms s                 (18) 

 The boundary conditions of eqs. (1) and (5) become   
hr R1,q, z, s( )= 0        (19) 

hr R2 ,q, z, s( )= g(q ) f (z)           (20) 

The condition of eq. (4) can be replaced by 
¶
¶q

hz (R2 ,-q, z, s)+ R2
¶
¶z

hq (R2 ,q, z, s) = 0  (21) 

   First, we solve eq. (15) with separation of variables. 
Considering the form, we obtain a solution 

hz = Anm (un , r)sin vmz( )sin(unq)
n, m
å     (22) 

where un and vm  are parameters, and 

Anm (n, r) = cz1nmJn jg mr( )+ cz2nmYn jg mr( ) , 

g m
2 = a 2 + vm

2        (23) 

where cz1nm  and cz2nm  are constants, and Jn  and Yn  
are Bessel functions of the first and second and order n .  
   Substituting eq. (22) into (16), we obtain a particular 
solution  

hrs =
qm
jg m

Anm (un -1, r) cos vmz( )sin(unq )
n, m
å  (24) 

where we used the following relation  
dNn (br)

dr
= bNn -1(br) - n

r
Nn (br)      (25) 

for a Bessel function Nn (br) [6]: 
   Next,, we get a homogeneous solution of eq. (16) with 
¶hz / ¶z = 0  as 

hrh =
1
r

A2nm (u2n , r) cos v2mz( )sin(u2nq )
n,m
å  (26) 

where u2n and v2m are parameters, and  

A2nm (n, r) = c21nm Jn ( jg 2mr) + c22nmYn ( jg 2mr) , 

g 2m
2 = a 2 + v2m

2              (27) 

where c21nm and c22nm are constants. A solution of eq. 
(16) is given by hr = hrh + hrs .   
   From the boundary conditions of eqs. (19) and (20), and 
setting u2n = un = pn  andv2m = vm = qm , we have                

hr =
R2

r
dnm Mnm (r) + dznmNnm (r)é

ëê
ù
ûún,m

å  

×cos qmz( )sin(pnq )              (28) 

where  
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       M nm (r) =
J pn ( jbmr)

J pn ( jbm R1 )
-

Ypn ( jbmr)
Ypn ( jbm R1)

,  

Nnm (r) =
J pn-1( jbmr)

J pn-1( jbm R1)
-

Ypn-1( jbmr)
Ypn-1( jbm R1)

  (29) 

bm
2 = a 2 + qm

2              (30) 

and dnm  and dznm  are constants satisfying the relation 

       Mdnm + Ndznm = czmcqn          (31) 

where 
M = Mnm (R2 ) ,  N = Nnm (R2 )      (32) 

In this case, eq. (22) is rewritten as  

hz =
jbm
qm

dznm Lnm (r)sin qmz( )sin(pnq )
n,m
å   (33) 

where 

       Lnm (r) =
J pn ( jbmr)

J pn-1( jbmR1)
-

Ypn ( jbmr)
Ypn-1( jbmR1)

  (34) 

   Finally, a solution of hq  is obtained from eq. (17) as 

hq =
R2
pn

dnm
dMnm (r)

dr
+ dznmNnm (r)

é

ë
ê

ù

û
ú

n,m
å  

           ×cos qmz( )cos(pnq)             (35) 

where 
dMnm (r)

dr
= jbmKnm (r) - pn

R2
Mnm (r)     (36) 

Knm (r) =
J pn-1( jbmr)
J pn ( jbm R1)

-
Ypn-1( jbmr)
Ypn ( jbmR1)

   (37) 

 
Determination of Constants 
The other equation to determine two constants is given by eq. 
(21) as 

R2
pn

A1dnm + N +
jbm pn

R2qm
2 L

é

ë
ê

ù

û
ú dznm = 0     (38) 

where 

A1 =
dM nm (r)

dr r=R2

= jbmK -
pn
R2

M    (39) 

K = Knm (R2 ) ,  L = Lnm (R2 )       (40)    
From eqs. (31) and (38) we have the constants     

dnm =
czmcqn

M
-Dnm

1- Dnm
,  

dznm =
czmcqn

N
1

1- Dnm
           (41) 

where          

Dnm =

jbm pn

R2qm
2

L
N
+1

jbm R2
pn

K
M

-1
           (42) 

 
 

MAGNETIC RELUCTANCE   
    
Expression of Reluctance 
We calculate the magnetomotive force between the centers 
of the two pole faces, fm , by                   

fm (qc ) = hq-qc

qcò R2 ,q, 0, s( )R2dq      (43) 

Then, we consider the mean force fm  by  

fm =
1

q2 -q1
fm q( )

q1

q2ò dq          (44) 

This is written as  

   fm =
2R2

q2 -q1

cqn

pn
3 cos pnq1( )

n=0
å jbm R2czm

m=0
å Anm  

                                            (45) 
where 

Anm =

K
M

-
pn

jbnm R2

1- K
M

-
2pn

jbm R2

é

ë
ê

ù

û
ú

qmR2

pn

æ
èç

ö
ø÷

2
N
L

  (46)         

We estimate the reluctance Rm  by the ratio of the 
magnetonitive force Fm  to the total magnetic flux F . 
From Fm = H0 (s) fm  and F = mH0 (s)ab , we have 

Rm =
fm
mab

                 (475) 

In this equation fm  expresses the equivalent length of the 
flux path. 
 
Estimation of Effective Height 
The effective distance of the spreading flux, zm , can be 
estimated from the flux continuity between the pole face and 
the r - z  plain of q = 0 . Unfortunately, this method is 
not simple here because it needs an integral calculation of 
Bessel functions that is complicated. Instead, we seek a value 
that gives a saturated value of the reluctance. Several 
examples give a rough relation  

              zm @
3
2

R2q2                 (48)    

 
Approximation for Terms of Bessel Functions 
Numerical calculation of Bessel function is complicated and 
may not go well in ill cases. To avoid such cases, we 
consider an approximation. First, we use the first kind of 
Hankel function instead of the second kind of Bessel 
function for computational convenience; in the below, Yv (×)  
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is replaced by Hv (×) = Hn
1 (×) .  

   For complex non-zero numbers z1 and z2 , and a 
positive real number n , we define the functions 

Pn =
Jn (z2 )
Jn (z1)

-
Hn (z2 )
Hn (z1)

, 

Qn =
Jn -1(z2 )
Jn (z1)

-
Hn -1(z2 )
Hn (z1)

, 

Tn =
Jn +1(z2 )
Jn (z1)

-
Hn +1(z2 )
Hn (z1)

         (49) 

Several examples support the following approximations: 

Qn

Pn
@

1
tan z2 / (nlzn )( )+

n
z2

  for n > 1  (50) 

 
Tn
Pn

@
-1

tan z2 / (nlzn )( )+
n
z2

  for n > 0   (51) 

where 

lzn =
kzn +1
kzn -1

,    kzn =
z2
z1

æ
èç

ö
ø÷

2n

     (52) 

We can use these approximation if q2 < p / 2  because 
then p0 > 1 . In addition, in higher frequencies, we have a 
simple expression 

fm¥ = aR2( )lm¥             (53) 

where 

lm¥ =
2R2

q2 -q1

cqn

pn
cos pnq1( )

n=0

¥

å czm

pn
2 + qmR2( )2m=0

¥

å  

          (54) 
 
CHECK OF THE MODEL 
We take the core of bc =10mm and R1 =20mm; the 
frequency response in Fig.2 is shown again with the filled 
lines in Fig. 6. Neglecting the reluctance of the laminated 
outer core, we calculate the numerical result with 
s = j2p f  from the equation 

F(s)
I(s)

=
m0A0N

2l0

1

1+ m0

m
fm¥ (s)

2l0

    (55) 

where A0 is an effective area of the air-gap, N  the turns 
of magnet coil, l0  the air-gap length. For the inner core 
taken here, we guess as 

A0 = a + 3
2

l0
æ
èç

ö
ø÷

b + l0( )     (56) 

considering the fringing effects. The other constants used are 
    m = 5, 000m0 H/m,  s = 1.0 ´107 1/Wm  
     N = 200  
   The numerical gain adjusted by the sensor gain is shifted 
0.1dB down to simplify the comparison and is shown by the 
dashed lines in the figure. The dynamical difference in the 
gain is small, about 0.1dB; however, the difference is large  

  

FIGURE 6: Numerical and experimental results  
 
 
in the phase. This seems due to other factors not considered 
in the model, mainly, static hysteresis and flux saturation. 
   We note the numerical result may be better if we assume 
a complex permeability in the form 

m ' = me- jj                 (57) 

The dash-dot lines give the result with j =30deg. 
 
CONCLUSIONS 
We considered a high cylindrical solid iron-core where 
magnetic flux spreads over the circumferential surface, and 
we presented an analytical model of the magnetic reluctance. 
The model obtained by a series of Bessel functions was 
approximated by a simple series without the Bessel functions. 
The numerical result was compared with the experimental 
data to check the usefulness of the model. 
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