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ABSTRACT 
This paper presents the active magnetic bearing control 
system synthesis and practical rotor dynamic 
experiences with a supercritical 250 kW turbo 
compressor. First, the physical boundary conditions of 
passing the first bending critical speed and feasible 
bearing characteristics near the critical speed are 
considered. Then, the control system is synthesized and 
analyzed using complex formulation. A synchronous 
response controller is added in parallel with the position 
controller in order to achieve the preferred bearing 
characteristics. Finally, measured performance of the 
control system when passing the critical speed with a 
real life compressor is presented 
 
INTRODUCTION 
High Speed Tech Oy Ltd. (HST) is a manufacturer of 
high speed turbo compressors equipped with active 
magnetic bearings (AMB). Up until today, HST has 
delivered approximately 900 compressors in the power 
range from 50 kW to 250 kW. A few years ago a 
product prototype utilizing a squirrel cage induction 
motor was built and tested. Due to the flexible structure 
of the motor part of the rotor, a supercritical 
construction was necessary.  

This paper concentrates on aspects of controlling the 
unbalance response near the first bending critical speed. 
It is a well known fact that, in the unbalance response 
point of view, a speed independent position controller 
can not be optimal in a wide speed range. Requirements 
of stability prevent this [9]. Too high unbalance leads to 
amplifier saturation at high speeds causing degradation 
of the bearing dynamics and even instability. A 
common solution to the saturation problem is to add a 
rotation synchronized narrow band filter in series with 
the position controller in order to eliminate the 
rotational synchronous control current vibration [4], [7] 
and [9]. Near a bending critical speed this approach can 
not be used since bearing forces are required to limit the 
vibration amplitudes. One option near the critical speed 
is to use whirling cancellation. This may be feasible in 
some cases, but generally it gives acceptable response 
only in a narrow speed range near the critical speed. 
One way is to formulate the unbalance response 
treatment to a mathematical optimization problem [8]. 
Naturally, such a general approach is capable of 
handling a variety of vibration control problems 

including passing the critical speeds. In [5] a rotation 
synchronized filter is attached in parallel with the 
position controller so that a narrow band phase lead 
section is obtained. In that solution, the gain of the total 
controller at the critical speed is non zero but finite and 
phase angle is adjusted so that the bearings acts as a 
pure damper at the rotation frequency [6]. This is also 
our conclusion of how the bearing characteristics should 
look like in the vicinity of a bending critical speed. The 
control circuit is generalized to allow exact adjustment 
of the general MIMO response to the preferred value in 
a straightforward way. Also the force cancellation is 
achieved as a special case. We call our approach 
synchronous response control (SRC). 

 
THE MACHINE AND THE COMPONENTS 
The compressor is shown in Figure 1. The application is 
a water treatment compressor with maximum electric 
input power of 250 kW and maximum speed of 320 Hz. 
The motor is a 2-pole squirrel cage induction motor. 
 

 
FIGURE 1: The compressor in the laboratory test stand. 
 
Rotordynamic model 
The rotor modeling was done using axi-symmetrical 3D 
finite elements [3]. Triangular isoparametric quadratic 
elements were used, see Figure 2. 
   Low order complex equation of motion [3], Equation 
1, was constructed by modal reduction. Five first 
bending modes were included. The acceleration terms 
were omitted, since they have no practical effect on the 
present study. In a complex quantity, for example 
displacement or force, the real part presents the value in 
X direction and the imaginary part the value in Y 
direction. 
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where q is modal degree of freedom vector, pS is 
displacement in the sensor locations, fB, bearing force, 
U unbalance vector, β is rotation angle and Ω rotational 
speed, . Modes 1,3,4,...,7 were scaled so that 
unity amplitude gives maximum displacement of 1 m 
and the rigid tilting mode, mode 2, so that a unity 
amplitude modal degree of freedom means one radian 
turning of the rotor. A constant unbalance vector, U

Ω β=

tst, 
was used in all the simulations. Numerical values of the 
model matrices and Utst are given in Appendix A. 
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FIGURE 2: The FE mesh and locations of the sensors, 
magnets and balancing planes. The first free-free 
bending mode shape at critical speed is drawn with bold 
curve and at zero speed with thin curve. 
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FIGURE 3: Campbell diagram. Calculated free-free 
natural frequencies are drawn with solid curves and 
measured frequencies are drawn with circles. 
 
Magnetic bearings 
The radial magnetic bearings were 8-pole, heteropolar 
bearings [9]. The key parameters of the radial AMB 
system are listed in Table 1. The controller used was 
MBC-12, a fully digital magnetic bearing controller 
made by HST. The dynamics of the position sensor anti 
alias filter, control delay and the power amplifier 
response are described by a transfer function g(s). 
 

TABLE 1: Parameters of the radial AMB system. 
Item Symbol Value Unit 
Sampling interval T 102.4 µs 
Current stiffness kI 340 N/A 
Position stiffness kP 2.3 MN/m 
Coil inductance  42 mH 
DC-link voltage Umax 150 V 
Maximum current Imax 12 A 
Load capacity, 0 Hz 1300 N 
Load capacity, 207 Hz 

FBmax 

(ω) 800 N 
Radial bearing air gap δ 0.55 mm 

 
Forces acting to the rotating part 
In rotor dynamics point of view, the motion induced 
forces acting to the impeller, cooling fan and seals 
should be negligible. The electric motor causes motion 
induced forces which might be of sufficient magnitude 
to have influence on rotor dynamics [1]. The tangential 
force caused by the motor has greatest destabilizing 
effect on the first forward bending mode when the speed 
is slightly above the bending critical speed. In the 
present case this effect adds approximately -0.5 % 
relative damping for the mode. In addition, the material 
damping on the rotor has a destabilizing effect on the 
first forward bending mode in the supercritical speed 
range. The position controller must provide enough 
damping for the first forward bending mode to 
compensate these destabilizing effects. 
 
Maximum deceleration 
The maximum deceleration of the motor occurs at 
frequency converter trip. The axial mass moment of 
inertia of the rotor is 0.135 kgm2. At 250 kW output 
power and 320 Hz rotational speed this means 
deceleration rate of about 140 Hz/s. The torque, and 
thus the deceleration rate, is proportional to the square 
of the speed. The control system must be able to handle 
the unbalance response also in a rapid deceleration like 
this. 
 
FEASIBLE SYNCHRONOUS RESPONSE 
In this chapter an important force balance equation is 
derived and the bearing characteristics near the critical 
speed are analyzed, neglecting the stability 
considerations and details of the magnetic bearing. The 
position stiffness effect is also neglected since it has no 
practical effect on the results.  
 
Force balance equation 
Assuming a constant speed, isotropic bearing 
characteristics and neglecting all forces but bearing 
force and unbalance force, the signals behave as follows: 
 
 ( ) ( ) ( )s B Bs S Ss, ,i ie eβ ββ β β= = =q q f f p ie β p    (2) 
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Subscript s refers to synchronous component of a signal. 
Steady state response can be solved from 
 

( )2
rotor rotor rotor s B BsΩ⎡ ⎤− − = +⎣ ⎦K M G 2Ωq B f U    (3) 

 
Speeds, where the coefficient matrix becomes singular 
are the free-free bending critical speeds and they can be 
solved from the following eigenvalue problem: 
 

(2
rotor cr rotor rotorn nΩ= −K v M G v) n

n n

               (4) 
 
In this case, the first bending critical speed is 
Ωcr3=207.5 Hz. The mode shape, v3, is scaled so that the 
displacement amplitudes over the whole rotor length are 
as close as possible to the amplitudes of the 
displacements of the mode shape of the non rotating 
rotor. The mode shape, v3, is plotted in Figure 2. The 
force balance equation is obtained by selecting Ω=Ωcrn 
and multiplying Equation 3 from left by vn: 
 

2
Bs cr crn uΩ= −b f                           (5) 

 
where  [ ]T

B 1 2n n n nb b= =b v B  and . Exactly 
at the free-free bending critical speed a certain bearing 
force is needed to prevent the whirling amplitudes from 
growing to infinity. Thus, the free-free bending critical 
speeds are important in a fundamental manner. 
Naturally, also near the free-free bending critical speed 
bearing force is needed to limit the whirling amplitudes 
below an acceptable level. 

T
crn nu = v U

At the critical speed the weighted sum of the 
synchronous bearing forces is determined by the modal 
unbalance, ucrn, according to Equation 5. To minimize 
the greater of the bearing forces it is necessary to adjust 
both forces equal in magnitude and in such phase that 
they both act against the unbalance force. In this way, 
the minimum bearing force needed to pass a bending 
critical speed, FBminn, with a rotor having modal 
unbalance ucrn is obtained. We can also write the 
maximum tolerated modal unbalance, ucrnmax, as a 
function of the dynamic load capacity, FBmax: 
 

 
( )

( ) ( )

2
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2
cr max 1 2 Bmax cr cr
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/
n n n n n

n n n n
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u b b F
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= + n

       (6) 

 
Assuming that the number of turns in the actuator is 
properly selected to utilize the full amplifier capability, 
the apparent power required from an amplifier of a 
bearing having dynamic load capacity of FBmax at 
frequency ω is [9]: 
 
 max max Bmax1.3*U I F ωδ≈                     (7) 
 

where δ is the air gap of the bearing, Umax, is the 
available voltage and  Imax is the maximum current of 
the amplifier.    
   In the present case, b31=0.077, b32=0.44 and the 
maximum bearing force at critical speed is about 800 N. 
This is sufficient to handle ucr3max=246 gmm modal 
unbalance. The mode shape at the critical speed is so 
close to the mode shape at zero speed that ucr3 is 
practically the third element of vector U and vise versa. 
This is not generally true. The modal unbalance value, 
246 gmm, is relatively high and with our rotor 
construction we expect our rotor unbalance to stay 
below it for the whole life time of the rotor. Obtaining 
800 N force at 207 Hz requires about 750 VA amplifiers, 
which is half of the apparent power available. 

  
Feasible bearing characteristics 
It is not a trivial question, how to optimally use the 
bearing capability near the bending critical speed, when 
the strict force, displacement and other limitations are 
properly taken into consideration [10]. In the following, 
we do not aim for the optimum solution but rather for a 
feasible solution, so that the minimum dynamic load 
capacity requirement is not considerably increased 
because of poorly chosen bearing characteristics.  
  The bearing system measures the synchronous rotor 
vibration in the sensor locations, pSs and controls the 
synchronous bearing forces, fBs. Because the controlled 
system (response from fBs to pSs) is static and linear, we 
expect to find a feasible solution of the form 
 

Bs Ss= −f Zp                                (8) 
 
Our target is to find one constant feedback matrix, Z, to 
be used in a wide speed range around the critical speed. 
Let us consider the optimum first. Write the equation of 
motion, Equation 3, in the following form: 
 

Ss Z Bs Ss0 Z Bs Z= + = +p P f p P f R U               (9) 
 
Define cost function 
 
 ( ) ( )H H

Ss P Ss Bs F BsEJ Ω = +p W p f W f            (10) 
 
where E denotes expectation value and WP and WF are 
weight matrices. Let us also define E(UUH)=WU. Cost 
function, Equation 10, is not the most accurate 
description of the actual requirements, see [10], but it is 
mathematically easy to handle and serves our purposes 
well enough. The synchronous force that minimizes the 
cost function can be expressed in feedback form, 
Equation 8, and the optimum Z-matrix is: 
 
 ( ) (1 H

opt F Z PΩ Ω−=Z W P )W                 (11) 
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Zopt is a real valued speed-dependent feedback matrix. It 
is interesting to note that the optimum feedback matrix 
does not depend on WU. Naturally, the optimum value 
of the cost function, Jopt, depends on WU. 

Let us denote by J(Ω,Z) the value of the cost function 
when the bearing force is produced by feedback, 
Equation 8.  

 
 ( ) ( )H H H

U Z Z P F Z Z, traceJ Ω ⎡ ⎤= +⎣ ⎦Z W R S W Z W Z S R

AZ

 (12) 

 
where SZ=(I+PZZ)-1. When passing the critical speed it 
is not necessary to minimize J for every speed. It is 
enough to keep the maximum value of J(Ω,Z) in an 
acceptable level, i.e. so that it does not significantly 
exceed the maximum value of Jopt over the speed range 
of interest. Let us denote maximum of Jopt over the 
speed range of interest by Jref. When searching the best 
constant Z, speed range from 160 Hz to 260 Hz was 
selected. The position weight was WP=1/(100µm)2. The 
force weight was WF=1/(800N)2 up to 207 Hz and 
increased relative to second power of speed above that  
and the unbalance weight was WU=diag(|Utst|)2. Equally 
distributed speeds, Ωk, were defined with 5 Hz step. 
Then Z minimizing the maximum of J(Ωk,Z) was 
numerically determined. Two solutions, ZA and ZB were 
obtained. After rounding: 

 

          (13) A B

0 2
MN/m,

4 10
i ⎡ ⎤

= − = −⎢ ⎥
⎣ ⎦

Z Z

 
The machine rotates to the negative direction around 

the Z-axis, i.e. Ω is negative. The solution ZA is a 
natural kind of a solution where the bearing force is to 
the opposite direction of synchronous whirling motion. 
In the solution B, the bearing force is to the same 
direction as the rotor moves. So, we have negative 
damping in the bearings. Note that the solution 
minimizing the defined criterion depends on WU. 

In Figure 4 J(Ωk,Z) with Zopt, ZA/B, Z=0, Zwc=∞I and 
Zwc2 are shown. Zwc2 means whirling cancellation only 
in end 2. As can be seen, the maximum of J(Ω,ZA/B) 
over the speed range is not much greater than Jref. The 
whirling cancellation in only end 2 works well near the 
critical speed but the solutions ZA/B work across a wider 
speed range. Whirling cancellation in both ends leads to 
great bearing forces in end 1 due to rigid body 
unbalance. Far away from the critical speed the force 
cancellation approaches the optimum solution. 

  In Figure 5 the unbalance responses are plotted for 
solutions ZA, ZB and Z=0. 
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FIGURE 4: J(Ω,Z)/Jref for different options. 
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FIGURE 5: Unbalance response with Z=ZA, Z=ZB and 
Z=0 (thin curve). The curves are from the 2-end. 
 
Both ZA and ZB work equally well near the critical 
speed. With Utst the whirling radii remain in an 
acceptable level and the maximum bearing force 
exceeds FBmin3 only slightly. Comparing to the 
responses with Z=0, we choose that Z=ZA/B should be 
used in the speed range from 160 Hz to 270 Hz. Above 
270 Hz the force cancellation strategy, (Z=0) is used in 
order to reduce the loading of the power electronics. 
Z=0 can be used with speeds below 160 Hz, if necessary.  
 
CONTROL SYSTEM SYNTHESIS 
The control system is shown in Figure 6. Complex 
formulation is extensively used in the controller 
synthesis. Position p, displacement d and control current 
J are complex vectors with two elements, where the first 
element is the signal in the 1-end and the second in the 
2-end.  
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FIGURE 6: The control system. 
 
If we assume isotropic bearing characteristics and 
neglect the stator side mechanics, the plant P will be 
isotropic and its dynamics can be written as: 
 

    (14) 
( ) ( ) ( )

( ) ( )

2
P P P PJ

S P P

1 in n n e

n n

βΩ+ = + +

=

x A x B J B

p C x
PUU

 
The process dynamics depend on the rotational speed 
due to gyroscopic coupling.  
   The controller consists of a position controller, K, and 
SRC in parallel with it. Together they constitute the 
total controller, Ktot. After some straightforward 
mathematics the total controller can be expressed in the 
following state space form: 
 

( )
( ) ( )

( )
( )

( ) ( )

( ) [ ] ( )
( ) ( )
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K
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K K
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1 i T i T
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A 0x
QC I Qc
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d

Q H D

x
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c

K n
n

n

+⎥
⎦

x
c

(15) 

 
where AK, BK, CK and DK are the matrices of the state 
space presentation of K. At a constant speed, the total 
controller behaves as a linear time invariant system. It is 
also straightforward to show that the synchronous 
response of the total controller is Ktot(eiΩT)=H. Value of 
the H-matrix is obtained from the Z-matrix by 
compensating the control delays and amplifier dynamics: 
 

( )I cr3

1
k g iΩ

=H Z                           (16) 

 

Synthesis of the position controller 
In the design of the position controller the emphasis is 
not on the unbalance response. Main target is to 
guarantee stability in the whole speed range with all 
parameter variations. In addition, low frequency 
stiffness and damping and high frequency gain need to 
be considered. 

The position controller was synthesized using the 
frequency domain approach presented in [9]. Frequency 
domain design methods have the advantage that the 
effects of the design changes on the performance and 
robustness are easy to see. The controller consists of 
constant real input and output transformation matrices, 
R1 and R2, respectively and a diagonal controller 
between them. See Figure 7.  
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FIGURE 7: Structure of the position controller. 

 
In the case of a subcritical machine, where the bending 
modes are clearly above the position control loop gain 
crossover frequency, this approach is well justified and 
the selection of the transformation matrices is 
straightforward. In the present case, we started by 
selecting the optimal transformation matrices for a rigid 
rotor [9]. Then the matrices were slightly adjusted so 
that the polarity in which the bending modes are visible 
for the controllers C1 and C2 does not change when the 
actuator gain and sensor sensitivities vary in their 
expected range. The polarity of the three first bending 
modes is the same for all modes and both of the 
controllers.  
  The frequency responses for the process seen by 
controllers C1 and C2 (when other controller is open) 
were computed for zero speed, maximum speed and one 
speed in between them. Controllers C1 and C2 were 
designed using graphical SISO design tool, which 
provides effective means of manipulating the shape of 
the open loop frequency response. The frequency 
responses of the controllers are shown in Figure 8. The 
position controller has a total of 21 complex states. 

The frequency response of the obtained position 
controller is quite different from HA/B. Especially, we 
were not able to obtain sufficient phase lead in the 
vicinity of the critical speed. As a consequence, the 
unbalance response is unacceptable as shown in Figure 
9. The maximum tolerated modal unbalance is only 35 
gmm. From Figure 9 it can be seen that below 160 Hz 
the position controller gives satisfactory response and 
no SRC is needed. 
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Design of the position controller was a challenging task: 
the first five bending modes had to be considered and 
the second and the third modes were relatively 
gyroscopic. In fact, the stability margins obtained with 
the designed controller are not sufficient for series 
production. We did not implement a speed scheduled 
position controller, but that would have solved the 
problem.  
 
Determination of Q-matrices 
Pulse transfer function from signal c to a is 
 
 ( ) ( )( ) ( ) ( )( ) 1

H z z z z
−

= + +S I HP I K P        (17) 
 

Assuming that the system SH is clearly faster than the 
convergence rate of SRC, we can write the following 
approximate differential equation for as: 
 

 ( )s
H s

1 i Td
e

dt T
Ω= − =

a
H sS Qa A a             (18) 

 
In order to obtain a convergent system, the eigenvalues 
of AH must be on the left half plane. Absolute value of 
Q-matrix is scaled so that the convergence rate is 
sufficiently low to avoid stability problems but fast 
enough for SRC to keep the bearing forces near the 
steady state values also in the fast deceleration of the 
compressor. Problem of selecting Q has been studied by 
several authors [2], [7] and [9]. 
   We used the obvious approach: The speed range 
where SRC is used was divided into small number of 
intervals. For every interval SHmid was determined at a 
speed near the middle of the interval and a constant Q 
for the interval was selected as 
 

1
Hmid

T
τ

−=Q S                             (19) 

 
where τ is the desired time constant. The speed range of 
270 Hz to 320 Hz (H=0) was divided into two 
scheduling intervals and time constant 0.125 s was used 
because of the fast deceleration rate at high speed. The 
speed range from 160 Hz to 270 Hz was divided into 
two scheduling intervals in SCR A. In SRC B, the same 
speed range had to be divided into four intervals. With 
SRC A the total controller was stable at every interval, 
whereas with SRC B the total controller was unstable in 
two first scheduling intervals. Time constant for range 
160 Hz to 270 Hz was 0.5 s, because the deceleration 
rate is lower there. 
   The stability of SRC was analyzed using numerical 
range. Numerical range of a square matrix X is a set of 
complex numbers defined as follows: 

 
 ( ) { }H 1 HC , 1Nϕ ×= ∈X x Xx x x x =            (20) 

 
Numerical range is a convex region in complex plane 
and it includes the eigenvalues of the matrix.  
Using numerical range is preferred to computing 

eigenvalues, since in addition to stability, numerical 
range in the left half plane implies a steady convergence 
in the following sense:  
 

( ) ( )H
s H s H

H
s s

2 Real 2 max reald f f
dt

f

ϕ= < ⎡⎣ ⎦

=

a A a A

a a

⎤
  (21) 
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Thus, if the whole numerical range ϕ(AH) is clearly on 
the left half plane we can expect smooth behavior in 
transient situations and when starting the algorithm. 
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FIGURE 10: Numerical ranges of AH for speeds 160 
Hz, 165 Hz,...,220 Hz. For H=HA and Q computed at 
190 Hz. 
 
Simulated unbalance responses 
Figure 11 shows the steady state unbalance response 
and transient unbalance response as the compressor is 
decelerating freely. As can be seen, both SRC options 
give good results. In fast deceleration neither SRC 
manages to keep the signals close to the steady state 
values. However, responses stay in an acceptable level 
with both options. 
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FIGURE 11: Unbalance response using SRC A and 
SRC B in steady state and when decelerating freely. 
Responses are the amplitudes in the 2-end bearing. 
 
MEASUREMENTS 
The tests were done with the prototype compressor. The 
motor was accelerated slowly up to the maximum speed, 
320 Hz, and decelerated back to zero. As the first 
bending mode is better seen in end 2 of the motor, we 
only present the measured signals and responses in that 
end. We unbalanced the rotor so that the modal 
unbalance of the first bending mode was approximately 

110 gmm. The measured amplitudes of the rotational 
synchronous components over the speed range of 
interest are shown in Figure 12: 
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FIGURE 12: The measured amplitudes of synchronous 
components of displacement, coil current and coil 
voltage in the radial bearing in end 2 of the motor as a 
function of rotational speed. The circles are measured 
for SRC A and the squares for SRC B. The larger 
markers are for acceleration and the smaller for 
deceleration slopes. 
 
Below 160 Hz there is no unbalance compensation. 
Between frequencies 160 Hz and 270 Hz both SRC A 
and SRC B strategies seem to work equally well as the 
simulation predicted. Above 270 Hz the force 
cancellation strategy effectively removes the 
synchronous currents.  
   There is a clear difference in the responses between 
the acceleration and deceleration curves. This was due 
to mechanical changes in the rotor caused by either 
thermal effects or centrifugal stresses.    
   The rotational synchronous position components, SX  
and SY for X- and Y-channels respectively, were 
calculated from the position measurements, pmX and pmY, 
as SX/Y=2*LPF(pmX/Ye-i⏐βm⏐), where βm is the measured 
rotational angle with respect to the positive X-axis and 
LPF stands for low pass filtering. For Ω<0 the complex 
formulated position in rotating coordinates, pR, is: 
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where pR0 is the average position of the rotor in the 
rotating coordinate system. For circular whirling orbit 
pRW becomes zero and the position does not depend on 
rotational angle, β. Due to anisotropy in the stator side, 
the whirling orbit of the rotor becomes elliptic. This is 
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seen as a circular whirling at frequency 2Ω in the 
rotating coordinate system. This whirling is described 
by pRW in Equation 22. The measured rotor positions are 
shown in Figure 13. 
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FIGURE 13: The measured position of the center point 
of the rotor in rotating coordinates in the sensor plane of 
end 2 of the rotor on the speed range from 160 Hz to 
270 Hz. The direction of the change of position when 
accelerating (Acc) and decelerating (Dec) is shown. The 
average positions, pR0, are shown with circles (SRC A) 
and squares (SRC B). Speeds 170,180 … 240 Hz on 
acceleration curves are highlighted with asterisks and a 
circle with a radius of the rotor coordinate whirling 
amplitude ⏐pRW⏐ is shown around them. Direction of 
rotation, Ω, is shown. 
 
CONCLUSIONS 
AMB control system design of a supercritical turbo 
compressor was successfully carried out and validated 
by the measurements with an actual machine. 
Determining the physical boundary conditions and 
design of the synchronous response control was 
straightforward. The position controller design, however, 
was a challenging task because the first five of the 
bending modes had to be considered and especially 
since the second and the third modes were relatively 
gyroscopic. Covering the whole speed range with one 
constant parameter controller turned out to be difficult 
in this case. An interesting fact is that, from the 
unbalance response point of view, the synchronous 
bearing force near the critical speed may as well be to 
the same direction as to the opposite direction of the 
rotor motion. In the present case the former option, the 
negative damping solution, however, led to unstable 
total controller and smaller stability margins compared 
to the latter choice. 
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APPENDIX A: The values of rotor model matrices 
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