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ABSTRACT 
In this paper, the dynamics associated with rotor-stator 
touchdowns involving full circular rub are considered. 
The expected range of phase shifts occurring in various 
measurable signals are examined from a theoretical 
standpoint, with the aim of developing model-free 
control algorithms that can recover contact-free rotor 
levitation from a state involving persistent rub with 
touchdown bearings. Two different strategies are 
proposed, according to whether touchdowns planes can 
be considered collocated with the AMBs or not. 
Requirements for successful operation, in terms of 
available sub-models and measurement information, as 
well as possible deficiencies are explained and verified 
through experimental tests on a multi-mode flexible 
rotor test rig. 
 
INTRODUCTION 
The theoretical problem of coupled rotor-stator whirl 
involving contact was first considered for multi-mode 
systems by Black [1], who assumed steady circular 
whirl in a system with radially isotropic characteristics. 
This type of analysis, which will be adapted for the 
purposes of this paper, is also applicable to auxiliary 
bearing touchdowns when caused by excessive 
synchronous disturbances rather than control system 
faults. Black’s approach of considering circular orbit 
solutions to the equations of motion has been employed 
by a number of researchers with the view to improving 
the design of mechanical components in auxiliary 
bearing systems [2-5]. When friction is included, the 
method is also applicable to backward whirl response 
prediction and has been widely considered as a means 
of predicting when systems are prone to backward whirl 
[6-8]. To this author’s knowledge, Black’s analysis of 
forward whirl rub behaviour has not previously been 

exploited in any direct way for the purpose of active 
controller design. 
 
SYNCHRONOUS WHIRL EQUATIONS 
The geometry associated with touchdown is shown in 
Figure 1. The surround is assumed to have uniform 
radial clearance c when the rotor and stator centres are 
at the static equilibrium position O. The deflection of 
the rotor zr may result from rotor unbalance in addition 
to the action of the contact force f. The deflection of the 
surround zs, results solely from contact with the rotor. 
Assuming circular whirl of the rotor and surround 
occurs, complex notation may be adopted: 

t
ssss Zyx Ω=+= jejz ,  t

rrrr Zyx Ω=+= jejz , 
t

yx Fff Ω=+= jejf  (1) 
Linear dynamics of the rotor and stator vibration imply 
that the complex amplitudes are related by [1]: 

FAQZ fr )(Ω+=  (2) 
FBZ fs )(Ω−=  (3) 
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FIGURE 1: Touchdown of a rotor with a circular 
surround 
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The complex amplitude Q is the vibration of the rotor 
due to unbalance that would have occurred without 
contact. The parameters Af and Bf, sometimes termed 
polar receptances or influence coefficients, are the 
complex values of the frequency response functions 
relating displacements in the contact plane to the contact 
force. Taking the contact normal as the zero phase 
reference, so that F = fejφ, where f is the contact force 
magnitude (hence real valued) and φ is the friction 
angle, it then follows that 

cZZ rs =−  (4) 
And so from (2) and (3) 

0e)( j =+++ cfBAQ ff
φ  (5) 

This vector equation relates the non-contact rotor 
response Q to the corresponding response involving 
circular rub with contact force magnitude f. Solution 
pairs Q and f are related by the geometry shown in 
figure 2. 

Writing αφ jj ee)( rBA ff =+ , it follows that, for a 
given non contact orbit magnitude |Q|, the 
corresponding contact force f is the solution to the 
quadratic equation 

0cos 2222 =−++ Qccrffr α  (6) 
If the magnitude of Q is greater than c then vibration 
without contact is impossible. There can then only be 
one solution for f that is positive and therefore 
physically plausible. An example of such a case is 
indicated by Q and f in Figure 2. However, at running 
speeds for which φφ −−<+∠<−− oo 90270 ff BA  
(i.e. 0cos <α ), certain unbalance levels can cause a 
response involving persistent contact to occur even 
when the normal operating orbits are within the 
clearance limit. Such situations tend to occur when 
running above the critical speed for coupled rotor-stator 
vibration, when the phase of ff BA +  is less than – 90˚. 
Note that there are then two positive solution for f for 
any given cQ < , although the solution having a lower 
value of f corresponds to an unstable orbit. A full 
investigation of the response behaviour associated with 
eqns (2-5) is given by Black [1], who deals with various 
examples involving multimode rotor and stator dynamic 
models. Although the analysis presented by Black 
considers only the case of a single contact, the results 
obtained are important for rotor-magnetic bearing 
systems as they explore the conditions under which 
jumps from contact-free to continuous rub conditions 
may occur.  
 
CONTROL IMPLICATIONS 
The equations (2-6) can also give useful insight on the 
potential difficulties of recovering contact-free 
conditions when persistent coupled vibration of the 
rotor and stator has been instigated. In passive rotor 
systems the only possible course of action is a rotor 

rundown. The risk associated with such a procedure is 
that a rundown would likely require transition through a 
critical speed for coupled rotor-stator vibration that 
would increase the severity of vibration and potentially 
lead to machine damage, although auxiliary bearing 
systems are usually designed with this in mind. 
Significantly, in magnetic bearing systems there is the 
possibility of using appropriate control forces applied 
by the bearings to recover contact-free conditions 
without the need for rundown.  

Consider a synchronous rotating control force 
applied through a magnetic bearing tUu jΩe= . The 
contact-free orbit in the touchdown plane is then given 
by 

UAQQ u+= 0  (7) 
Here, Q0 is the response without control and Au is the 
influence coefficient relating bearing forces to the 
displacement in the touchdown plane. If contact has 
occurred then the contact-free orbit Q will not be 
measurable. Nonetheless recovering contact-free 
conditions will require a reduction in the magnitude of 
Q, which will then produce a corresponding reduction in 
f and Zr. If Q0 and Au are both known, the required 
control action can be calculated according to 

0
1QAU u

−−=  (8) 
However, if the contact-free orbits Q0 have not been 
determined, or if the rotor unbalance condition could 
have changed, then an alternative procedure must be 
used.  

Previously, a number of unbalance control schemes 
have been proposed for magnetic bearings in which the 
controller acts on measurements of rotor displacements 
and produces synchronous control forces at the 
bearings, updated in an iterative manner to cancel the 
effects of unbalance forces e.g. [9-13]. Although 
conditions involving stator contact are not considered in 
these studies, a similar approach will be used here. For a 
single measurement plane and control force plane the 
control law may take the form 

krkk ZUU Γ+=+1  (9) 
Where Γ is a complex gain of sufficiently small 
magnitude. From (7), the updated orbit is then given by 

krukk ZAQQ Γ+=+1  (10) 
Consider the vector geometry associated with eqns (2-
6), as shown in Figure 2. From triangle OAB, the phase 
difference between Zr and Q varies with contact force 
magnitude f, but never by more than 180˚ for a fixed 
running speed (i.e. fixed values of Af and Bf). It is 
therefore always possible to determine a complex value 
of αδ je=Γ  such that o90−∠− Q ru ZA∠+< α  

o90+−∠< Q . Which from (10) then implies that 

kk QQ <+1  for sufficiently small δ. Therefore, after 
applying a number of control updates the rotor orbits 
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will be sufficiently small that contact with the surround 
will cease. The difficulties associated with such a 
scheme are that: 

1. the appropriate value of Γ varies with running speed 
and so a controller that works at one speed may be 
unstable at other speeds.  

2. the influence coefficient/s Au and the expected range 
of phase shifts under contact must be determined for 
each possible running speed. 

3. the control scheme takes no account of the severity 
of contact or whether contact has even occurred. 

Multi-input multi-output versions of this type of scheme 
have also been proposed and shown to be effective on 
flexible rotor AMB systems [5,14]. However, further 
identification routines were used to exactly quantify the 
expected levels of phase shift under contact and thereby 
ensure stable operation. 
 
MODEL-FREE CONTROL APPROACHES 
In this paper we will consider that the rotor-stator 
system possesses the characteristics of a passive 
mechanical structure and therefore the complex 
coefficients Af and Bf have phases within the range        
(-180˚, 0). The implications of this for expected phase 
shifts in some measurable signals are embodied in the 
following two conditions: 

Condition 1 
With reference to Figure 3, the condition )( ff BA +∠  

)0,180( oo−∈  implies that the point A can never be 
below the line MM′  that passes through the point – c 
and is parallel to the contact force vector. The phase of 
Q relative to the contact force is therefore always in the 
range (0˚, 180˚), irrespective of running speed: 

QFQ ∠<∠<−∠ o180  (11) 

Condition 2 
Again referring to Figure 3, the condition 

)0,180( oo−∈∠ fA  implies that the point A can never be 
below the line NN′ passing through B parallel to the 
contact force vector. With some consideration, it should 
be clear that this condition implies that 

rf ZAQ ∠>∠−∠  and also that fAQ ∠−∠  
o180+∠< rZ . Consequently, 

QZAQ rf ∠<∠+∠<−∠ o180  (12) 
Note that for a given running speed (fixed value of Af) 
condition 2 also implies that the phase of Q and Zr can 
never vary by more that 180 degrees, as has been 
previously indicated. 
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FIGURE 2: Geometry of rotating frame vectors 
associated with rotor-stator interaction involving 
synchronous whirl  
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FIGURE 3:  Points A and B are confined to upper 
regions of the complex plane owing to passive dynamics 
 
 
CASE A: Collocated AMBs and touchdown planes 
Suppose that a magnetic bearing and contact plane are 
sufficiently well collocated so that Af = Au. In such cases 
we may again consider the control law 

krkk ZUU αδ j
1 e+=+  (13) 

Selecting the controller phase shift as 2/π−  implies 

krfkk ZAQQ 2/j
1 e πδ −

+ +=  (14) 

From condition 2 it then follows that kk QQ <+1 , at 
least for sufficiently small scalar δ > 0. The control 
algorithm (13) is appropriate to systems with collocated 
magnetic bearings and touchdown bearings, and 
requires no knowledge of Af or Au. The controller will 
act to reduce the orbit sizes irrespective of whether 
contact has occurred or not. In many cases the 
collocation requirement could be relaxed providing that 
running speeds are sufficiently low that phase 
differences between Af and Au, as would typically arise 
from high order flexural modes, are negligible. Note 
however that to adopt this algorithm the absolute motion 
of the rotor must be measurable and so it is not 
appropriate to cases where rotor displacement 
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measurements are affected by motion of the stator. Of 
course the assumption of steady-state conditions used in 
deriving the expected phase shifts is not always 
realistic, but providing there are only slow changes in 
control forces, the model is usually valid. 

In some applications, it may be advantageous to use 
a control algorithm that acts only to eliminate contact or 
rub once it has been instigated. A variation of the 
proposed control approach could be applied when the 
stator can be represented by a simple compliance model 
(possibly nonlinear) of the form FkZ ss −= . In such 
cases the Zs, Zr and F are geometrically related as 
illustrated in Figure 4. The possibility considered now is 
that motion of the stator in the contact plane or the 
contact force can be measured (being loosely equivalent 
as they have equal and opposite phase). In this case, the 
stator motion has a phase advance over the rotor motion 
which for small deflections is equal to the friction angle 
φ. This phase advance drops to zero as the 
displacements become large compared with the 
clearance.  Here the control law may take the form  

kskk ZUU αδ j
1 e+=+ , φπα −−= 2/  (15) 

Or alternatively, with use of contact force 
measurements, 

kkk FUU αδ j
1 e+=+ , φπα −= 2/  (16) 

A potential shortfall of this algorithm is that an estimate 
of the friction angle φ is required for implementation 
and if this friction angle varies too much with operating 
speed then it will not be possible to achieve stable 
control over the entire range of running speeds with a 
single gain value. Some fairly simple scheduling of gain 
values could however be adopted. 
 
CASE B: Non-collocated AMBs and touchdown 
planes 
When non-collocation is a significant factor in as much 
as the phase of Af and Au deviate, then it would seem 
that a controller that exploits condition 1 may be a better 
option. However, knowledge of Au is then inevitably 
required, this can be easily obtained through 
identification routines that apply test forces at the 
bearing. In this case the control law can be taken as 

kkk FUU αδ j
1 e+=+ , 2/πα −−∠= uA  (17) 

k
j

ukk FeAQQ 2/
1

πδ −
+ +=  (18) 

Which, from condition 1, implies that kk QQ <+1  for 
sufficiently small δ. Alternatively, when FkZ ss −=  
then selecting 

kskk ZUU αδ j
1 e+=+ , 2/πα +−∠= uA  (19) 

leads to the same conclusion. 
 
The contact control approach is shown schematically in 
Figure 5 with alternatives of feedback of contact force 

or stator displacement measurements. In practice both 
the gain δ and phase shift α used in the control feedback 
would be selected according to choice of measurement 
signal and scheduled with running speed when 
necessary. It should be remarked that direct 
measurement of stator deflection or contact forces can 
also be used for other tasks that might enhance the 
‘smart machine’ capabilities of a magnetic bearing 
system as such measurements can be used for 
monitoring and assessing touchdown events, condition 
monitoring of touchdown bearings as well as for 
purposes of control.  
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FIGURE 4: Point B falls on the line MM′ when the 
stator is modeled as a compliant surround. 
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FIGURE 5: Schematic of contact control approach 
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EXPERIMENTAL TESTS 
To verify whether the operating principles of the 
proposed control strategies are effective on a real 
system, a 2-disk flexible rotor-stator interaction test rig 
with a single AMB has been used for testing. In this 
system (Figure 6), the magnetic bearing and contact 
plane are not collocated: this allows the associated 
difficulties for control to be explored fully.  

The rotor shaft has diameter 10 mm and is 
supported by two ball bearings at each end giving a span 
of 700 mm. The AMB core (disk 1) and the contact disk 
(disk 2) are spaced approximately equidistantly on the 
shaft. The stator contact mechanism (Figure 7) consists 
of a circular surround of mass 0.55 kg supported by four 
transverse rods of variable length that allow lateral 
stiffness to be selected freely. The inner diameter of the 
surround is 64 mm and the nominal radial clearance is 
400 µm. During all tests, the contact surfaces were 
lubricated with light oil. 

PID control of the AMB is used to provide stable 
centring of the rotor and also increases modal damping. 
For most purposes, the rotor can be considered as a 
‘two-mass’ system with the first two natural frequencies 
for rotor vibration (20 Hz and 70 Hz) both being within 
the nominal running speed range of 0 – 100 Hz. The full 
frequency response data for additional control force 
inputs applied at the bearing is shown in Figure 8. In 
terms of phase response, disk 1 and disk 2 can be 
considered collocated up to frequencies of 40 Hz.  
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FIGURE 6: Flexible rotor-stator interaction test rig 
 

 
FIGURE 7: Stator-disk contact mechanism 
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FIGURE 8: Frequency response from AMB control 
current to rotor displacement in contact plane (disk 2) 
and AMB plane (disk 1) 
 

The rotor was set with moderate levels of unbalance, 
resulting in the run-up response shown in Figure 9. 
During these ‘low speed’ tests the stator support was set 
with stiffness 0.42 MN/m, giving the stator a ‘sprung 
mass’ behaviour with natural frequency of 
approximately 140 Hz. Figure 9 compares the response 
magnitude, with and without the stator mechanism 
fitted. During run-up with the stator fitted, contact 
commences at approximately 10 Hz. Contact is at first 
intermittent, due to slight misalignment of the rotor and 
surround, but becomes continuous at speeds higher than 
15 Hz. Although the magnitude of rotor vibration grows 
only slightly as the speed increases further, the stator 
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vibration increases markedly until at a speed of 24 Hz 
the rotor falls out of contact.  Deflection of the stator 
was monitored by a high precision non-contact probe 
(Bently Nevada 3300 REBAM) and reached a 
maximum amplitude of 6 µm as seen in Figure 9. It 
should be noted that the results presented here show 
only synchronous components of the vibration and that 
other vibration components can and do occur, 
particularly when contact with the stator is intermittent. 
Of course, these vibration components are not evident in 
the (time-averaged) estimate of the synchronous 
component and will not be acted on by the controller. 

The run-up was repeated with the contact control 
algorithm (15) operating. The controller was configured 
to only update the control force when the stator 
vibration exceeded 1 µm in magnitude. This was so that 
the controller did not act on measurements of low level 
vibration transmitted through the foundation structure. 
The response of the controlled system (Figure 9) is 
similar to the uncontrolled case up to 15 Hz. However, 
above this rotational frequency, the control action 
updates the control force to maintain the magnitude of 
steady state stator vibration below 1µm. Superimposed 
on the figure are the boundaries for intermittent contact 
and continuous contact, applicable when circular orbits 
occur. The model-free control works well in low speed 
tests where the running speed is kept below 40 Hz, but it 
should be made clear that this success relies on the fact 
that 

1) the ‘collocation’ assumption is valid for Ω < 40 Hz 
2) the compliant stator model is valid for Ω << 140 Hz 

Of course, the first assumption breaks down for higher 
running speeds and this controller was found to become 
unstable if rub occurs while passing through the second 
critical speed. 

To achieve contact control at higher rotational 
frequencies the non-collocation must be accounted for, 
as with the control law (19). With this controller, the 
scheduling of the controller phase shift according to  

2/πα +−∠= uA  was based on uA∠  calculated from 
the frequency response data of Figure 8 and 
implemented using a look-up table approach. The 
results are shown in Figure 11. It can be seen that, as the 
system passes through the first critical speed, the 
controller adapts the control force so that only light 
contact with the stator occurs. Again the stator vibration 
is kept below 1µm in magnitude. As the rotor speed 
approaches the second critical speed, contact 
recommences at around 60 Hz. At first the controller 
appears to respond successfully, as the synchronous 
vibration components of both the rotor and stator 
vibration are reduced. However this does not give the 
complete picture, as the orbital motion of the rotor and 
stator is not circular and so intermittent contact with the 
surround still occurs. Above the critical speed the 

controller is unable to maintain light contact. At this 
time the stator undergoes severe aperiodic vibrations 
and the control cannot be considered stable. The poor 
result with this controller was attributed to the failure to 
maintain steady circular whirl vibration conditions, 
rather than a flaw in the working principles of the 
control algorithm. 
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FIGURE 9: Unbalance response at disk 2 with and 
without stator contact interaction (PID feedback control 
only)  
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FIGURE 10: Unbalance response with and without 
feedback of stator deflection measurements (control 
with equation (15)) 
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The occurrence of intermittent contact and non-
circular responses can be partly attributed to the 
dynamic behaviour of the stator mechanism, as the 
natural frequency for lateral vibration of the structure 
was only slightly higher than the maximum rotational 
frequency and has only light damping (ζ < 0.1). In an 
effort to reduce the dynamic influence of the stator, the 
stator support stiffness was increased to 1.0 MN/m, thus 
increasing the stator natural frequency to 215 Hz. 
Repeating the run-up test in this case gave much better 
results, as can be seen from Figure 12. The rotor passes 
through the second critical speed with the synchronous 
component of the stator vibration maintained close to 
the set limit of 1 µm. The synchronous component of 
the rotor vibration is also constrained quite effectively. 
Although these results appear much improved, and 
stability of the control is maintained, intervals of 
aperiodic vibration were still found to occur around the 
second critical speed. These caused jumps in the time-
averaged measurements when the synchronous 
components of vibration were fluctuating significantly. 
The time-averaged values were however regulated quite 
effectively. 
 
CONCLUSIONS 
This paper has proposed the use of a geometric analysis 
of circular whirl with rub as a basis for model-free 
controller design for robust synchronous control. The 
analysis shows that measurements of contact force or 
stator displacements can be usefully employed to limit 
contact forces during rub conditions. The need for 
models of the system dynamic compliance in the contact 
plane can be circumvented if the stator and rotor 
structures behave like passive structures. In 
experimental tests, controller stability problems were 
found to arise when aperiodic and non-circular orbits 
occurred. This problem appears to be avoidable if 
damping levels for stator vibration modes are 
sufficiently high, or if stator modes have natural 
frequencies that are sufficiently well separated from the 
synchronous frequency. 

In some situations, improved versions of these 
algorithms could be developed that are based on speed-
scheduling of gains. This need not require full or 
accurate system models but rather approximate 
knowledge of rotor critical speeds where phase swings 
tend to occur and could usefully be accounted for in the 
control action. Although two basic approaches have 
been outlined in this paper it is not presupposed that 
these would suit all types of system. However, it is also 
quite possible that other sufficiently bounded phase 
relations can be determined that can also be exploited 
for the purposes of control. 
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FIGURE 11: Unbalance response with feedback of 
stator deflection measurements (control with equation 
(19)). Stator with ‘low’ natural frequency (140 Hz) 
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FIGURE 12: Unbalance response with feedback of 
stator deflection measurements (control with equation 
(19)). Stator with ‘high’ natural frequency (215 Hz) 
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