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ABSTRACT

This paper discusses a passivity based control with-
out conventional cross-feedback which is one of the
nonlinearity canceling. The obtained controllers
have NO canceling terms of the gyroscopic effect.
First we discuss the modeling and clarify some im-
portant properties of the flywheel. Second, we dis-
cuss some PID (PID-type) controllers from the view-
point of passivity. Finally we give some simulation
and experimental results.

INTRODUCTION

This paper discusses a passivity based control with-
out conventional cross-feedback. The cross-feedback
is one of the (so called) nonlinearity canceling
methodologies which make it possible to apply many
fruitful results from linear systems and control the-
ory.

On the other hand, the passivity based control is
still the one of the recent trends of the nonlinear
control. This approach utilizes the physical or struc-
tural properties for stabilization or tracking (as well
as modeling) without or with less nonlinearity can-
celing. In our case, this nonlinearity is nothing else
the gyroscopic effect.

In this paper, first we discuss the modeling and
clarify some important properties of the flywheel.
Second, we discuss some PID (PID-type) controllers
from the viewpoint of passivity. These controllers
have no canceling terms of the gyroscopic effect. Fi-
nally we give some simulation and experimental re-
sults and conclude this paper.

PRELIMINARY

In this section, we give some definitions of basic con-
cepts, such as passivity, port-Hamiltonian systems
and their properties.

Passivity

The concept of passivity is not quite new and the
passivity based control can be traced back at least to
the work of Takegaki and Arimoto [1]. However, this
methodology is recently developed in a new frame
work and more fruitful results are obtained.

Let us consider a finite-dimensional linear space U
and let the output space Y be the dual space U∗.
Denote the duality product (power) between U and
U∗ = Y by < y|u > for y ∈ U∗ and u ∈ U . < y|u >
is the linear function y : U → R evaluated in u ∈ U .

Furthermore, take any linear space of functions u :
R+ → U denoted by L(U), and any linear space of
functions y : R+ → Y = U∗, denoted by L(U∗).
Define a duality pairing (supplied energy)

< y|u >T =
∫ T

0

< y(t)|u(t) > dt (1)

between Le(U) and Le(U∗) by defining for u ∈ Le(U)
(i.e. uT , the trancation of u to the interval [0, T ],
exists in L(U) for all T ≥ 0), y ∈ Le(U∗), assuming
that integral on the right-hand side exists.

Definition 1 Let G : L(U) → L(U∗). Then G is
passive if there exists some constant β such that

< G(u)|u >T≥ −β (2)

for any u ∈ L(U) and any T ≥ 0, where it is assumed
that the left-hand side is well-defined. Intuitively,
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the maximally extractable energy is bounded by a
finite constant β. G is passive iff only a finite amount
of energy can be extracted from the system G.

Port-Hamiltonian systems

This section refers to the port-Hamiltonian sys-
tems [5] and the generalized canonical transforma-
tion (g.c.t.) [4],[3].

Definition 2 A (simplified version) port-
Hamiltonian system with a Hamiltonian H(x) ∈ R
is a system described by


ẋ = J(x)

∂H(x)
∂x

T

+ g(x)u

y = g(x)T
∂H(x)

∂x

T (3)

with u, y ∈ Rm, x ∈ Rn and a skew symmetric ma-
trix J(x), i.e. −J(x) = J(x)T holds. The following
property of such systems is known.

Lemma 1 [5] Consider the port-Hamiltonian sys-
tem (3). Suppose the Hamiltonian H(x) satisfies
H(x) ≥ H(0) = 0. Then the input-output map-
ping u �→ y of the system is passive with respect to
the storage function H , and the feedback

u = −C(x) y (4)

with a matrix C(x) ≥ εI > 0 ∈ Rm×m renders
(u, y) → 0. Furthermore if H(x) is positive definite
and if the system is zero-state detectable, then the
feedback (4) renders the origin asymptotically stable.

The zero-state detectability and the positive def-
initeness of the Hamiltonian assumed in Lemma 1
do not always hold for general port-Hamiltonian sys-
tems. In such a case, the generalized canonical trans-
formation is useful. A generalized canonical transfor-
mation (g.c.t.)[4] is a set of coordinate transforma-
tions and feedback transformations

x̄ = Φ(x)
H̄ = H(x) + U(x)
ȳ = y + α(x)
ū = u + β(x)

(5)

which preserves the structure of the port-
Hamiltonian system given in (3). x̄, H̄ , ȳ and
ū denote the new state, the new Hamiltonian, the
new output and the new input respectively. The
properties of such transformations and how to utilize
them for stabilization are summarized as follows:

Lemma 2 (g.c.t.) [4] (i) Consider the port-
Hamiltonian system (3). For any functions U(x) ∈ R
and β(x) ∈ Rm, there exists a pair of functions
Φ(x) ∈ Rn and α(x) ∈ Rm such that the set (5)
yields a generalized canonical transformation. Any

coordinate transformation Φ(x) yields a generalized
canonical transformation if and only if

J(x)
∂U

∂x

T

+K(x)
∂H + U

∂x

T

+ g(x)β(x) = 0 (6)

holds with an arbitrary skew-symmetric matrix
K(x) ∈ Rn×n. Further the change of output α and
the matrices J̄ and ḡ are given by

α(x) = g(x)T
∂U(x)

∂x

T

(7)

J̄(x̄) =
∂Φ(x)

∂x
(J(x) + K(x))

∂Φ(x)
∂x

T
∣∣∣∣∣
x=Φ−1(x̄)

(8)

ḡ(x̄) =
∂Φ(x)

∂x
g(x)

∣∣∣∣
x=Φ−1(x̄)

. (9)

and the new input-output mapping ū �→ ȳ is passive
with respect to the new storage function H̄(x̄) ≥ 0.

Using the generalized canonical transformation,
we can change the property of the system without
changing the inherent generalized Hamiltonian struc-
ture with passivity, and we can convert the system
into several convenient forms.

Theorem 1 (A relation between Casimir
function and g.c.t.) Suppose that the port-
Hamiltonian system has Casimir function with re-
spect to J , that is,

∂C(x)
∂x

J = 0 (10)

holds for the input u = 0. Then, the following trans-
formation

U(x) = Hc(C(x)), α = β = 0 (11)

satisfies the condition (6) in Lemma 2 for any func-
tion Hc.

Proof of Theorem 1 The dynamics after the
transformation is

ẋ = J(x)
∂(H + Hc(C))

∂x

= J(x)
∂H

∂x

T

+
(
−∂C

∂x
J(x)

)T
∂Hc(C)

∂C

T

(12)

= J(x)
∂H

∂x

T

(13)

and equivalent to the original one. There is no need
to apply feedback transformation. (Q.E.D.)

MODELING

In this section, we discuss modeling of the flywheel
system and its some properties. The state-space
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Figure 1: Flywheel.

equation of the flywheel is usually given as

mẍ = u1 (14)
mÿ = u2 (15)

Idθ̈x = +ω3Ipθ̇y + u3 (16)

Idθ̈y = −ω3Ipθ̇x + u4 (17)

where m is the rotor mass, Id, Ip is the rotor inertia,
x, y are the rotor (the center of gravity) displace-
ments, θx, θy are the rotor angles, ui(i = 1, ..., 4) is
the control inputs. Fig. 1 shows the (normal) coor-
dinates of the flywheel.

Remark The third and the forth equations (16),
(17) are the approximation in the following sense at
least. First, the equations are not the rigid body
which should be discussed not on R3 but on SO(3)
or should be discussed as the form[

ρ̇

Ṁ3ω

]
=

[
1
2 (I3 + S3(ρ) + ρρT)

−S3(ω)M3ω

]
+

[
0
I

]
u (18)

where ρ = (ρ1, ρ2, ρ3) ∈ R3 is from Euler parame-
ters, ω = (ω1, ω2, ω3) ∈ R3,

S3(ω) =


 0 +ω3 −ω2

−ω3 0 +ω1

+ω2 −ω1 0


, M3 = diag(I1, I2, I3)

(19)
and u = (u3, u4).

Second the input u3 and u4 depend on the flywheel
orientation since they are the torques in the body
coordinate frame and the above equation (18) has

u = R(ρ1, 0, 0)R(0, ρ2, 0)R(0, 0, ρ3) Eu (20)

where Eu ∈ R3 is the torque (calculated by AMB
forces) in the inertia coordinate frame, R(•) ∈ R3×3

is some orientation matrix. This means that ω̇3 al-
ways depends on input u through equation (20) and
ω3-dynamics should not be reduced as long as the
rotor orientation is vertical exactly.

Theorem 2 (modeling) Consider the coordinate
transformation {

q = θ

p = Mθ̇
(21)

where θ = (θx, θy) ∈ R2 and M = diag(Id, Id) ∈
R2×2 and take the output ω for the system.

Then, equations (16) (17) are modeled in the port-
Hamiltonian system

Σfw




ẋ =
[

0 I2

−I2 S2

]
∂H
∂x

T
+

[
0
I

]
u

y = ∂H
∂p

T

(22)

where x = (q, p) ∈ R4, H = (1/2)pTM−1p and

S2(ω3) =
[

0 +ω3Ip

−ω3Ip 0

]
. (23)

Proof of Theorem 2 Equations (22) can be de-
rived by a direct calculation. (Q.E.D.)

Note that the function H is bounded from be-
low and a positive definite function. S2 is a skew-
symmetric matrix, that is, ST

2 = −S2 holds for any
ω3.

From Lemma 1, the input-output mapping u → y
of the system (4) is passive (lossless) with respect to
the storage function H , that is,

Ḣ = yTu. (24)

Furthermore, the feedback

u = −C(x)y (25)

with a positive definite matrix C(x)(> 0) renders
(u, y) → 0.

As the rigid body system, the following (impor-
tant) result holds.

Theorem 3 (zero-state observability) The
input-output map of the system (22) is zero-state ob-
servable.

Proof of Theorem 3 With the input u = 0,
y ≡ 0 ⇔ ω ≡ 0 ⇒ ω̇ ≡ 0 ⇒ q ≡ p ≡ 0. (Q.E.D.)

As for the first and the second equations (14) (15),
the same procedure can be applied straightforwardly.
In this paper, the control problem of (14) (15) is not
stated since they are decoupled from equations (16)
(17) and easier (i.e. just corresponding to the case
of S2 ≡ 0)
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CONTROL

In this section, we discuss some PID controls with-
out conventional cross-feedback based on the previ-
ous sections.

PD Control without cross-feedback
against the gyroscopic effect

First, as the simplest case, we discuss the global sta-
bility of PD control for the flywheel. No that there
is no cross feedback in the controllers.

Lemma 5 Consider the system Σfw and the fol-
lowing (nonlinear) controller

u = −∂U(q)
∂q

− Cy. (26)

with a (radially unbounded) positive definite func-
tion U and any positive definite matrix C > 0. Then
the equilibrium set of the closed-loop system contains
only the origin and it is (globally) asymptotically sta-
ble.

Remark Note that there is NO closs-feedback
term as

u = −∂U(q)
∂q

− Cy −
[

0 +ω3Ip

−ω3Ip 0

] [
θ̇x

θ̇y

]
(27)

in equation (26), that is, the gyroscopic effect
is not canceled any more. The common (joint-
independent) PD controller is a special case of the
above controller. Indeed, If U = (1/2)qTKqq and
C = C̄M where Kq, C̄ are (positive definite) diago-
nal matrices, then

u = −
[

K1 0
0 K2

] [
θx

θy

]
−

[
C1 0
0 C2

] [
θ̇x

θ̇y

]
(28)

is derived directly. In equation (28), the gain param-
eters do not have to be constant and can depend on
ω3.

Proof of Lemma 5 Since the first term satisfies
the condition in Lemma 2, the system is again port-
Hamiltonian system. By applying the first term of
the controller, the original system is converted to


[
q̇
ṗ

]
=

[
0 I2

−I2 S2

] ∂(H+U)
∂q

T

∂(H+U)
∂p

T


 +

[
0
I

]
ū

ȳ = ∂(H+U)
∂p

T

(29)

where H = (1/2)pTM−1p + U(q) is the total energy
with virtual potential energy U . By applying the

second term as in Lemma 1, the state converses to
the input-output nilling space

Ω0 ≡ { ȳ = ū = 0} (30)

From Theorem 2, the state also converses to Ω1 ≡
{q ≡ 0}, that is, the origin since y = ȳ. It is easily
shown that this origin is globally asymptotic stable
if U is radially unbounded. (Q.E.D.)

PID Control (local stability)

In this section, we discuss the local stability of a PID
control without any cross-feedback All gain matrices
are diagonal but must satisfy an assumptions below.

Lemma 6 Consider the system Σfw and the fol-
lowing PID controller{

ṙ = q
u = −Kqq − KIr − Cy

(31)

where Kq, KI , C are positive definite matrix. Fur-
thermore, suppose that there exits a ∈ R such that
(1/2)qTKqq ≥ a‖q‖2. Then the equilibrium set of
the closed-loop system contains the only origin and
it is (locally) asymptotically stable.

Proof of Lemma 6 The closed-loop system is
described as



 q̇

ṗ
ṙ


 =


 0 I2 0

−I2 S2 − C 0
K−1

q 0 0


[ ∂(H+U+Ur)

∂x

T

∂(H+U+Ur)
∂r

T

]

−




0
∂(H+U+Ur)

∂r

T

0




(32)
where U = (1/2)qTKqq and Ur = (1/2)rTKIr are
the virtual potential energy. Consider the following
scalar function

V = H +U +a(qTp+
1
2
(qTCM−1q+rTKIr)). (33)

Then the time derivative of V (along the trajectory
of the closed-loop system) is derived as

V̇ = pTM−1ṗ + qTKqM
−1p

+a(qTṗ + pTM−1p + qTCM−1q̇ + rTKIq)
= pTM−1(−CM−1 + aM)M−1p

−a(qTKqq + qTSM−1p + qTKIq) (34)

from the condition of a, V̇ ≤ 0.

On the other hand, since the inequality

1
4
pTM−1p + aqTp ≤ −a2qTMq (35)
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always holds from M = (
√

M)2,

V ≥ 1
4
pTM−1p + aqTq

+
1
2
rTKIr +

a

2
qT(CM−1 − 2aM)q (36)

and V is bounded from below and a positive def-
inite function of (x, r). Hence, if the initial state
satisfy V (0) < aδ2, then ‖q(0)‖ ≤ δ and V̇ ≤ 0
holds because there exists the parameter a such that
(1/2)qTKqq ≥ a‖q‖2, C ≥ 2aI and C ≥ (a +

√
a)I.

From LaSalle’s invariance theorem, the local stability
is proved. (Q.E.D.)

Remark Unlike with Lemma 5, Lemma 6 requires
the assumptions for the gain parameters.

PID Control (global stability)

In this section, we discuss the global stability of
a PID control without conventional cross-feedback.
Similar to Lemma 5, the positive gain parameters do
not have to satisfy assumptions any more.

We add the integrator r ∈ Rl to the system:





 q̇

ṗ
ṙ


 =


 0 I 0

−I S2 0
0 0 0







∂H
∂q

T

∂H
∂p

T

∂H
∂r

T




+


 0 0

I 0
0 I


 [

u
ur

]
[

y
yr

]
=

[
∂H
∂p

T

∂H
∂r

T

]
(37)

Remark Here r is the state of the stabilizer. How-
ever, it is not connected to the system Σfw yet. Any
function C(r) is a Casimir function of the system
with respect to J matrix. From Theorem 0, the
Hamiltonian H can be replaced by new Hamiltonian
H +Hc(r) where Hc(r) is any (lower bounded) func-
tion of r.

The following lemma connects the dynamics of the
original system and that of r-integrator via a gener-
alized canonical transformation.

Lemma 7 Consider the system (37) with the
Hamiltonian H. Then the transformation

H̄ = H(q, p) + 1
2 (K−1

q p + r)TR(K−1
q p + r)[

ȳ
ȳr

]
=

[
ȳ
yr

]
+

[
0

R(K−1
q p + r)

]
[

ū
ūr

]
=

[
u
ur

]
+

[
−∂U

∂q

T
+ S2

∂U
∂p

T

K−1
q

∂U
∂q

T

]

(38)

converts the system into the following port-
Hamiltonian system Σfwi



 q̇

ṗ
ṙ


=


 0 I2 −KT

q

−I2 S2 0
K−1

q 0 0






∂(H+U)
∂q

T

∂(H+U)
∂p

T

∂(H+U)
∂r

T


+


 0

u
uc




[
ȳ
ȳr

]
=


 ∂Ĥ

∂p̄

T

∂Ĥ
∂r̄

T




(39)
whose Hamiltonian is

H̄ = H+
1
2
qTKqq+

1
2
(K−1

q p+r)TR(K−1
q p+r) (40)

where R > 0 is any positive definite matrix.

Proof of Lemma 7 Since the transformation sat-
isfies the condition (6), the transformation is a gen-
eralized canonical transformation and can be proved
by a direct calculation. (Q.E.D.)

Theorem 4 (global stabilization) The equilib-
rium set of the closed-loop system of Σfw and the
following (PID-type) controller{

ṙ = K−1
q

∂(H+2U)
∂q

T

u = −∂U
∂q

T
+ S2

∂U
∂p

T − Cȳr.
(41)

only contains the origin and it is globally asymptoti-
cally stable.

Proof of Theorem 4 By applying the feedback[
u
uc

]
= Cc

[
y
yc

]
(42)

with any positive definite matrix Cc, the state of
the closed-loop system converses to the input-output
nulling space

Ω0 = {
[

u
uc

]
=

[
y
yc

]
= 0}. (43)

Since this condition implies{
M

1
p + K−1

q (K−1
q p + r) = 0

K−1
q (K−1

q p + r) = 0,
(44)

that is, the state converses to Ω = {p = r = 0}
and the system Σfw is zero-state detectable from
Lemma2, the system Σfwi is also zero-state de-
tectable. The equilibrium set is the only origin and
it is globally asymptotically stable. (Q.E.D.)

SIMULATION AND EXPERI-
MENT

Fig. 2 shows the closs-section of the flywheel in the
experiment. The mass is 13.67 Kg and the diame-
ter is 400 mm. The sampling time is 8 kHz. The
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Figure 2: Cross-section of the flywheel system.
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Figure 3: Simulation (210 Hz).

parameters are Ip = 0.0179, Id = 0.0180 and the
PID gains are shown in Table 1. These gains were
scheduled according to ω3 because not stability but
control performance (i.e. overshoot) would depend
on ω3. One of the possible gain-tuning guidelines is
discussed in [3].

Fig. 3 shows the result of simulation for 210 Hz.
Fig. 4 and Fig. 5 show the results of experiment for
110 Hz and 210 Hz. For the contoller (41), CM =
kdI2, Kq = kpI2, KI = kiI2. We can find the small
parameter a in Lemma 3. It is cofirmed that the
rotor states are smoothly stablilized in both cases.
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Figure 4: Experiment (110 Hz).

Table 1: PID gains
ω3 [Hz] kd kp ki

0 − 20 4×103 2×106 4×106

20 − 45 3.8×103 1.8×106 0.5×106

45 − 100 3.5×103 1.5×106 0.3×106

100 − 150 3×103 0.9×106 0.25×106

150 − 200 2.5×103 0.9×106 0.25×106

200 − 240 2.3×103 0.8×106 0.2×106

240 − 300 0.2×103 0.8×106 0.2×106

There is no touch down and the position states are
also smoothly stabilized.

CONCLUSION

This paper discusses a passivity based control with-
out conventional cross-feedback. These controllers
have NO canceling terms of the gyroscopic effect.
First we discuss the modeling and clarify some im-
portant properties of the flywheel. Second, we dis-
cuss some PID-type controllers from the viewpoint
of passivity. Finally we give some simulation and
experimental results.
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