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ABSTRACT 
In the flux-path control magnetic suspension system, the 
force acting on the floator is controlled by moving a control 
plate made of ferromagnetic material, which is located 
between the permanent magnet and the floator. In this paper, 
the three-dimensional attractive forces acting on the floator 
were measured with a manufactured force sensor. The force 
actuating in the vertical direction is measured with the load 
cell built in the sensor. The force actuating in the horizontal 
direction is measured with the plate springs with strain 
gauges. These measurements clarify the relations between the 
positions of the control plates and the three-dimensional 
attractive forces. In addition, stable levitation was achieved 
by applying PD control. Several dynamic characteristics in 
the vertical direction were also measured. 

INTRODUCTION 
The authors have proposed flux-path control magnetic 
suspension [1]. In the flux-path control magnetic suspension 
system, the force acting on the floator is controlled by 
moving a control plate made of ferromagnetic material, 
which is located between the permanent magnet and the 
floator. Complete contactless levitation and positioning in the 
vertical and horizontal directions have been achieved [2], [3]. 
However, its fundamental properties have not been studied 
sufficiently. In this paper, a new apparatus with a floator of 1 
[kg] is fabricated and the three-dimensional attractive forces 
acting on the floator are measured. In addition, complete 
contactless levitation is achieved by applying PD control. 

Several dynamic characteristics in the vertical direction are 
also studied experimentally. 

PRINCIPLE OF FLUX-PATH CONTROL 
MAGNETIC SUSPENSION 
Figure 1 shows the principle of flux-path control magnetic 
suspension. The narrower the distance between the control 
plates is, the more flux passes through the control plates so 
that the attractive force acting on the floator is reduced (Fig. 
1(a)). In contrast, the wider the distance is, the stronger 
attractive force acts on the floator (Fig. 1(b)). Stable levitation 
in vertical direction can be realized by moving the control 
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FIGURE 1: Principle of flux-path control magnetic suspension
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plates. In addition, control in the horizontal direction also can 
be realized by moving the control plates in the same direction 
as shown in Fig. 1(c).  

APPARATUS 
Figure 2 shows a fabricated experimental apparatus. The size 
is approximately 300×300×300 [mm]. It has three 
flux-path control modules for achieving three-dimensional 
positions.  

 

In each module, a control plate is attached at the top of 
the lever. The plate is made of ferromagnetic material and the 
size is 4×70×25 [mm]. It controls the flux from the 
permanent magnet to the floator. The motion of the lever is 
controlled by a pair of electromagnets located at the bottom 
of the lever. A gap sensors Tk (k=1, 2, 3) detects the position 
of the lever.  

The diameter and the mass of the floator are 63 [mm] 

and 1 [kg] respectively. The three dimensional position of the 
floator is detected by Sx, Sy and Sz. Figure 3 shows the 
Photograph of the apparatus.  

TWO-AXIS FORCE SENSOR 
Figure 4 shows a manufactured two-axis force sensor for 
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FIGURE 4: Two-axis force sensor 
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FIGURE 2: Schematic drawing of the experimental 
apparatus 
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measuring attractive forces acting on the floator. It can 
measure attractive forces in the vertical and horizontal 
directions at the same time. The vertical force is measured 
with the load cell built in the sensor. The horizontal force is 
measured with the plate springs with strain gauges. 

Figure 5 shows the definition of coordinate axes and 
variables. Three control plates are arranged in a concentric 
way at every 120 degrees. W is the distance of the control 
plate from center axis of the floator. G is the gap between the 
permanent magnet and the floator. 

EXPERIMENTAL METHOD 
First, the attractive forces Fx and Fz in the x and z-directions 
are measured with the two-axis force sensor for the following 
variables: 

W: 15 - 22 [mm] and G: 17.4 - 26.4 [mm]. 
Next, the two-axis force sensor is rotated by 90 degrees and 
the attractive forces Fy in the y-axis and Fz are measured in 
the same way. The three components of attractive force 
are calculated by combining both the measurement 
results. 

EXPERIMENTAL RESULTS 
Figures 6 and 7 show the three components of attractive 
force when one actuator is operated. They show that 
the smaller G, stronger the attractive force. It also 
shows that Fx , Fy and Fz is approximately proportional to W. 
The force can be controlled from 2.1 to 11.3 [N] in the 
z-direction, and from 0 to 0.35 [N] in the x- and 
y-directions. Figure 8 shows the three components of 
attractive force when G is set to be 20.4 [mm] and one 
actuator is operated. The results are magnified in Fig. 9. 
The relations expression of Fx , Fy and Fz to W are obtained as

)15(02.0 −= WFx   [N],          (1)  
)15(03.0 −= WFy   [N],          (2) 

4.4)15(19.0 +−= WFz   [N].          (3) 

Figures 10 and 11 show the three components of 
attractive force when two actuators are operated. The 
relations of Fx , Fy and Fz to W when G = 20.4 [mm] are 
obtained as

)15(06.0 −= WFx   [N],          (4)  
)15(01.0 −= WFy   [N],          (5) 

4.4)15(43.0 +−= WFz   [N].          (6) 

Comparing Fig. 6 with Fig. 10, we find that the attractive 

force and its ratio to gap are greater when two actuators are 
operated. The attractive force constant matrix Kq is defined by 

wKF q= ,                                  (7)  

where 
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FIGURE 6: Three components of attractive force 
acting on the floator when one actuator is operated 
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FIGURE 7: Horizontal components of attractive force 
when one actuator is operated 
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FIGURE 8: Three components of attractive force at 
G=20.4[mm] when one actuator is operated 
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iw ：displacement of control plate i（i=1, 2, 3）, 
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CONTROL SYSTEM 
STRUCTURE 

In this research, the designed controller has a double-loop 
structure. In the inner loop, the motion of the flux-path 
control module is locally fed back. In the outer loop, the 
displacement of floator in the z-direction is also fed back. 
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FIGURE 9: Horizontal components of 
attractive force at G=20.4[mm] when one 
actuator is operated  
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FIGURE 10: Three components of attractive 
force acting on the floator when two actuators 
are operated  
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FIGURE 11:  Horizontal components of attractive 
force when two actuators are operated 

   In the inner loop, PD control is applied to provide the 
flux-path control modules sufficient stiffness and damping 
property to suspend the floator. In the outer loop, PD control 
is also applied to stabilize the suspension system.  

INNER LOOP 

An equation of motion in each flux-path control module is 
given by 

kiks
..
k ikwkwm =−   )321( ,,=k  (9) 

where : mass of the control plate with the lever, : 
force-displacement factor : force-current factor and : 

control current. When PD control is applied, the control 
current is given by  

m sk
ik ki

,ew
dt
dppi kkvdk ++−= )(  (10) 

where proportion gain, derivative gain and 
command signal. The transfer function from  to the 
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FIGURE 12: Local feedback control 
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displacement is obtained as  

,
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=  (11) 

where 
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m
pka vi=1  (12) 

  ,
m

kpka sdi −
=0  (13) 

m
kb i=0 .  (14) 

The block diagram of the local feedback is shown by Fig.12. 

OUTER LOOP 

The motion of the floator in the z-direction is given by 

                   (15) mg,z,w,w,wFzM
..

−= )( 321

where z : displacement of the floator in the z-direction, M : 
mass of the floator and F : attractive force acting on the 
floator. Considering the symmetry in structure of the system, 
we get an equation linearized about the equilibrium state 
where the gravitation force mg equals the steady magnetic 
force as 

wKqz+= zKzM s
..

,                       (16) 

where 
    : force-displacement factor, sK

[ ]qz3qz2qz1 KKK=qzK  

]2402020[ ...=     [N/mm].         (17) 

Control system in the vertical direction of the actual 
experiment is shown in Fig. 13 where qd and qv are 
proportional and derivative gains in the outer loop. 

The displacement signal in the z-direction of the floator 
is sent to the PD controller. The command signal generated 
from this controller sent to each module. The attractive forces 
Fz1, Fz2, and Fz3 are changed by moving the control plates.  

DIGITAL IMPLEMENTATION 

A DSP-based digital controller was used for implementing 
these controllers. The control period is 100 [µs]. Moreover, 
an approximation differentiation circuit with the transfer 
function given by Eq. (18) was built in the digital controller. 
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In the experiment described in the next section, each 
parameter of the approximation differentiation circuit was set 
as follows. 

],s/1[2001 =nω  ]s/1[3002 =nω , 5.0=ς .  

POSITIONING IN THE Z-DIRECTION 

Figure 14 shows the z-direction displacement of the floator 
when the command signal ez is set to be 0.01 to 0.12 [V]. It is 
found that the position is approximately proportional to the 
value of command.  

STEP RESPONSE IN THE Z-DIRECTION 

A rectangular wave with an amplitude ez =1.4 [V] and a 
frequency 0.2 [Hz] was inputted as a command signal. Figure 
15 shows the displacement when qd =9.7×102 [A/m] and qv 
=29.1 [As/m]. The amplitude of the floator’s displacement is 
about 0.6 [mm]. 
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FIGURE 15: Step response in the z-direction 
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FREQUENCY RESPONSE IN THE Z-DIRECTION 

Figure 16 shows a frequency response in the z-direction when 
qd = 9.7×102  [A/m] and qv = 29.1 [As/m]. The input is ez 
with an amplitude of 50 [mV] and is the output is 
displacement z. A resonance is observed at a frequency of 8.9 
[Hz]. 

CONCLUSIONS 

In flux-path control magnetic suspension system, the 
three-dimensional attractive forces acting on the floator were 
measured with two-axis force sensor. The modeling of 
control system for the vertical motion of the floator was 
carried out based on these measurement results. In addition, 
noncontact levitation and positioning in the z-direction by the 
PD control were achieved.  
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