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ABSTRACT 
Radial force and torque are the control objectives which 
determine the machine performance of levitation and 
rotation in a bearingless switched reluctance motor 
(BSRM). This paper proposes a control scheme for 
rotating and levitating a 12/8 BSRM. The motor torque 
and radial force are independently controlled with hybrid 
excitations in main windings and levitation windings. 
Firstly, the mathematical relationship between radial 
force and currents, which is utilized in this work, is 
derived with Maxwell stress tensor method. Then the 
proposed control scheme is analyzed. The average 
torque of each phase generated in levitation region 
equals to zero for its symmetry of the aligned position. 
Accordingly, the current calculating algorithm is 
deduced to minimize the magnitude of instantaneous 
torque in levitation region. The principle and realization 
of the proposed scheme are demonstrated with FE 
analysis. Experimental results show that the proposed 
scheme is effective for a stable levitation. 
Index Terms—bearingless motor, switched reluctance 
motor, radial force, torque, independent control.  

I. INTRODUCTION 
Switched reluctance motors(SRM) have been already 
applied in some special fields for its doubly salient 
configuration. Its particular characteristics are the simple 
constructions, low manufacturing cost, fault tolerance, 
and the ability to operate in a high temperature 
environment. Due to its doubly salient structure, SRM 

produces an attractive magnetic force between stator and 
rotor poles. The force can be divided into tangential and 
radial components. The tangential force component 
compels the rotor to rotate, and the radial force 
component brings along the problem of noise and 
vibration.  

Recently, electric machines usually work at a high 
speed for a high power density. But a higher rotational 
speed shortens the mechanical bearing life. This limits 
the high speed ability of switched reluctance motors. A 
bearingless technology is developed to avoid the contact 
and lubrication between motor shaft and bearing. Many 
researchers have been devoted to integrating the 
bearingless technology with switched reluctance motors 
[1]-[12]. The bearingless switched reluctance motors are 
divided into one set of windings and two sets of 
windings according to the number of coil windings 
embedded on the stator. The two kinds of motors 
generate radial forces both by changing the flux density 
in the motor air gap. The unbalanced magnetic forces are 
produced because of the different flux density in the two 
sides of the rotor. Then the controlled radial forces can 
pull the shaft back to the geometric center by controlling 
different flux densities. 

In bearingless switched reluctance motors with only 
one set of winding in each stator pole, two types with 
different pole pair numbers 12/8 and 8/6 are studied. All 
pole currents are controlled independently [5]-[12]. In 
8/6 BSRM, three windings are loaded with different 
currents in each commutation period and sum of three 
torques and three lateral forces supply desired torque and 
suspending forces [8], [9]. In 12/8 BSRM, a scheme uses 
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single-phase and two-phase sinusoidal excitation to 
control radial force and torque [5], [7], [11]. Another 
scheme controls the torque with the conventional 
method which all energizing phase currents are the same 
to produce the desired torque [6], [10]. And two 
additional poles in the phase with descending-inductance 
are excited to produce the requested radial force acting 
on the shaft. 

In bearingless switched reluctance motors with two 
sets of windings, there are a main winding and an 
auxiliary winding which is called radial force winding 
on each stator pole [1]-[4]. The main winding is utilized 
to control the motor torque and produces a bias magnetic 
field for the radial force generation. The auxiliary 
winding generates the required radial force for the 
levitation and also generates an additional motor torque. 
The mathematical model about the relationship between 
radial force and motor currents is derived to implement 
the levitation in practice [1], [2]. In this model, radial 
force is determined by the main winding and radial force 
winding currents which vary gradually on different rotor 
angular position. The control scheme is also discussed 
and verified experimentally [3], [4]. In this scheme, the 
commutation period of each phase is fixed but the firing 
angle can be shifted back and forth to change the 
commutation position. Therefore the currents and firing 
angle determine the values of radial force and motor 
torque together. Another control scheme based on the 
currents distribution strategy presented in [3] is reported 
in [12]. In this scheme, the required main winding and 
auxiliary winding currents are summed and go into a 
single motor coil per pole. However, the current and 
firing angle calculating processes in these mentioned 
schemes is sophisticated and variables are influenced by 
both of the desired radial force and torque. A more 
memory resource in digital signal processor is needed to 
store a look-up table for a good performance. The 
coupling control of radial force and torque also reduces 
the motor performance more or less. 

In this paper, a novel scheme with hybrid excitations 
is proposed based on 12/8 bearingless switched 
reluctance motors with two sets of windings on the stator 
pole. The scheme uses hybrid excitations in the main 
winding and single-phase excitation in the radial force 
winding. The radial force and average torque are 
controlled independently. The principle and advantage 
of the scheme is illustrated. And the levitation currents 
calculation is also derived. The proposed scheme is 
verified with FE analysis and experiments. 

II. TORQUE AND RADIAL FORCE MODEL 
Fig.1 shows only phase A stator differential windings 
configuration of the 12/8 bearingless switched reluctance 

motor. The arc of the rotor and stator teeth is 15 
mechanical degrees (°M). The aligned position is 
defined as θ=0°. When the two differential windings 
conduct the currents as shown in Fig.1, the flux density 
in air gap 1 increased whereas that decreased in air gap 3. 
So an unbalanced magnetic force is generated toward the 
positive direction in the α axis. The radial force in the β 
axis can be also produced in the same way. Then the 
radial force in any desired direction can be produced by 
composing the two radial forces in perpendicular 
directions. The radial force produced by phase B or C 
can be derived similarly. 

Fig.1 Configuration and flux-line of phase A 

A. Maxwell Stress Tensor Method 
With the magnetic saturation neglected, the derivation of 
mathematical model is based on the Maxwell Stress 
Tensor in this work. Recall the Maxwell Stress Tensor as 
given in (1), (2), where the resultant force is independent 
of the integration path[13]. 

( )2 2

0

1
2n n tS

F B B dA
μ

= −∫∫  (1) 

0

1
t n tS
F B B dA

μ
= ∫∫  (2) 

As shown in Fig.2, the relative position of two poles 
is simplistic to simplify the derivation. The flux paths 
are supposed to be radial across the air gap, and the flux 
lines are either orthogonal or parallel to the integration 
paths. Under these assumptions, the Maxwell stress 
equation can be simplified as follows: 

The integration path is perpendicular to the flux lines:  
2

0

1
2n nS

F B dA
μ

= ∫∫  (3) 
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The integration path is parallel to the flux lines:  
2

0

1
2n tS

F B dA
μ

= − ∫∫  (4) 

 

 
Fig.2 The integration paths with Maxwell stress tensor 

method 

Forces acting on the rotor pole in Fig.2 can be derived 
by using the above mentioned equations. 

The radial force component equals: 

( )( )

3 5 6
2 2 2

2
0 2 4 5

2 2
23 45 2 56

0

2

2

r m m f

m f

hF B dl B dl B dl

h B l l B l

μ

μ

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠

= + +

∫ ∫ ∫
 (5) 

The tangential force component equals: 
2 4

2 2
1

0 1 32t f m
hF B dl B dl
μ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫  (6) 

Thus, the torque acting on the rotor pole in Fig.2 can 
be written as, 

( )2 2
1 12 34

02t f m
hrT F r B l B l
μ

= ⋅ = −  (7) 

B. Flux Density Calculation 
In terms of the straight flux lines, the main flux density 
can be written as, 

( )0 1
1

0

m ma b sa
ma

N i N i
B

l
μ +

=  (8) 

The fringing flux density can be also obtained with 
the straight and circular flux lines as, 

( )0 1
1

0 4
m ma b sa

fa
N i N i

B
l r

μ
π θ

+
==

+
 (9) 

C. Radial Force and Instantaneous Torque 
Equations 
The radial forces produced by phase A in α and β axis 
can be expressed, respectively, as 

( )
( )

1 3

2 2
1 3

2 20
1 3

12
2

a a

ma ma

fa fa

F F F

rB B rh

B B r

α

π θ

μ
θ

= −

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟
⎝ ⎠= ⎜ ⎟

⎜ ⎟+ −⎝ ⎠

 (10)

( )
( )

2 4

2 2
2 4

2 20
2 4
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a a

ma ma
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F F F

rB B rh

B B r

β

π θ
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= −
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 (11)

When the magnetic field is linear, the radial forces can 
be simplified as, 

( ) 1f ma saF K i iα θ=  (12)

( ) 2f ma saF K i iβ θ=  (13)

Where, 

( )

( )

( )

2
0

0

2
0

12

6
32

4

f m b

l
K hrN N

l r

π θ

θ μ
θ

π θ

⎛ ⎞−
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟+
⎜ ⎟+⎝ ⎠

 (14)

The net torque by phase A is 

( )( )
1 2 3 4

2 2 2 2 2 2
1 22

a a a a a

t m ma b sa b sa

T T T T T

J N i N i N iθ

= + + +

= + +
 (15)

When generating a positive torque, 

( ) ( )
( )

0
0 20

0 0

161
4

tp
l r

J hr
l l rθ

θ
θ μ

π θ≤

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟−⎝ ⎠

 (16)

On the contrary, the coefficient Jt(θ) at the negative 
torque region is 

( ) ( )
( )

0
0 20

0 0

161
4

tn
l r

J hr
l l rθ

θ
θ μ

π θ≥

⎛ ⎞+
⎜ ⎟= − +
⎜ ⎟+⎝ ⎠

 (17)

D. Modification with FE analysis 
Due to that the selection of integration paths and some 
assumptions which could affect the accuracy of the 
proposed model are utilized in the deriving process, it is 
necessary to take a modification to eliminate these 
negative influences. In view of the radial forces 
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generated region with the proposed control scheme, the 
modification focus on the angle position from -7.5° to 
7.5°. Figure 3 shows the radial forces calculated 
respectively by the modified model and FE analysis. It is 
observed that the proposed modified model and FEM 
results agree well. And therefore, the modified model is 
used in this paper for its convenience and accuracy in 
calculating radial forces. The modification relative to 
Kf(θ) can be written as, 

( ) ( )( )2 3'
1 2 31f fK K k k kθ θ θ θ θ= + + +  (18)

Where, k1=0.8, k2=-4, k3=12. 

R
ad

ia
l f

or
ce

 F
α(

N
)

θ(°)

im=6A; is1=3A; is2=0.

Fig.3 FEM results and calculating results 

III. PRINCIPLE OF NEW CONTROL SCHEME 

A. Proposed Independent Control Scheme 
The conduction width of main winding and radial force 
winding currents was fixed at 15°M in [3]. And 
advanced angle θm was introduced to change 
positive-torque region. Given that θm equaled to zero and 
radial forces were also constant, the average torque will 
become zero because of the symmetry of phase 
inductance. Under such condition, the currents 
conduction period including main winding currents and 
levitation currents is from -7.5°M to 7.5°M. Then the 
additional average torque generated by levitation 
currents is zero. For a required total average torque, the 
firing angle of main winding currents can be advanced 
while that of levitation currents keeps constant. The 
schematic diagram of phase A is shown in Fig. 4 to 
illustrate the principle of the proposed control scheme.  

Mode I (θ∈[θon,-π/24]): In this mode, phase A is in 
the ascending-inductance region. Its main winding is 
excited to generate positive torque, while levitation 
current is zero so that phase A does not produce any 

radial forces. The needed radial force is generated by 
phase C which produces negative torque in the 
descending-inductance region. Thus it is two-phase 
excitation in this mode. The motor’s instantaneous 
torque is the sum of torques produced by phase A and C,  

( )
( )

2 2
1 1

2 2 2 2 2 2
2 1 2

( ) 2

( ) 2
12

tp m ma

tn m mc b sc b sc

T J N i

J N i N i N i

θ

πθ

= ⋅ +

+ ⋅ + +
(19)

0° 7.5°-7.5°-15°-22.5° 15°

imb

0° 7.5°-7.5°-15°-22.5° 15°

imc

ima

0° 7.5°-7.5°-15°-22.5° 15°

0° 7.5°-7.5°-15°-22.5° 15°

Lma

isa

0° 7.5°-7.5°-15°-22.5° 15°

0° 7.5°-7.5°-15°-22.5° 15°

isb

isc

0° 7.5°-7.5°-15°-22.5° 15°  
Fig.4 Idealized current waveforms with proposed control 

scheme 

Mode II (θ∈ (-π/24,0)): Phase A is still in the 
ascending-inductance region and generates a positive 
torque. Radial force is generated by phase A instead of 
phase C. It is one-phase excitation in this mode and the 
instantaneous torque is simple as, 

( )2 2 2 2 2 2
2 2 1 2( ) 2tp m ma b sa b saT J N i N i N iθ= ⋅ + + (20)

Mode III (θ∈[0,π/12+θon]): In this mode, phase A is 
in the descending-inductance region and still produced 
the desired radial force. It creates negative torque and 
the main winding of phase B is energized to produce 
positive torque in its own Mode I. The instantaneous 
torque is expressed as, 

( )2 2 2 2 2 2
3 2 1 2( ) 2tn m ma b sa b saT J N i N i N iθ= ⋅ + + (21)

Mode IV (θ∈(π/12+θon,π/24]): Phase A still supplies 
the required radial force, and the main winding currents 
of phase B begin to fire for the positive torque in its 
ascending-inductance region. It is two-phase excitation 
and the instantaneous torque can be written as, 
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( )
( )

2 2
4 1

2 2 2 2 2 2
2 1 2

( ) 2
12

( ) 2

tp m mb

tn m ma b sa b sa

T J N i

J N i N i N i

πθ

θ

= − ⋅

+ ⋅ + +
 (22)

The operation modes of phase B and C can be also 
derived in the same way. From the above illustration, it 
can be seen that BSRM is excited by hybrid excitations 
which composes one-phase excitation with two-phase 
excitation in main windings, whereas only one-phase 
excitation in radial force windings. The average torque 
generated by levitation currents is zero to avoid the 
problem of additional torques in conventional scheme. 

B. Average torque Calculation 
Due to the average torque generated in mode II, III, and 
IV relative to each phase equals to zero, the total average 
torque can be derived from the integral of the 
instantaneous torque in mode I of phase A as 

( )

( )

/ 24 2 2
1

2
1

3 2
/ 4 on

avg tp m m

tm on m

T J N i d

G i

π

θ
θ θ

π

θ

−
= ⋅

′=

∫  (23)

Where, -π/12≤θon≤-π/24. 
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( )
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( )( )
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0 0

2 2 2
0 0
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0 0
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0 0
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24 2 11521 ln
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24 2 42 ln
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tm on m
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on on

on
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G N hr

l

r rl l
r r r l l

r rl r rl
r r rl r rl

θ μ
π

π θ

π π π
π π θ π θ

π π π θ

π π π π θ π

′ =

+⎧ ⎫− + ×⎪ ⎪
⎪ ⎪
⎪ ⎪⎡ ⎤⎛ ⎞+ + +⎪ ⎪⎢ ⎥⎜ ⎟ +⎨ ⎬⎜ ⎟⎡ ⎤− + +⎢ ⎥⎣ ⎦⎝ ⎠⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎛ ⎞+ −⎪ ⎪⎜ ⎟⎢ ⎥
⎪ ⎪⎜ ⎟− + −⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

(24)

Due to that the radial force winding is excited by 
one-phase excitation, the instantaneous radial forces of 
phase A can be expressed as, 

( )
( )

'
1

2 '
2

0
0

saf
ma

saf

F iK
i

F iK
α

β

θ
θ

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
 (25)

From the mentioned analysis, it is shown that the total 
average torque is determined by im1 and θon, while the 
instantaneous radial force is related to im2 and is. So the 
average torque and radial force can be controlled by 
different variables, and the objective of independent 
control is achieved. 

C. FEM Analysis of Proposed Control Scheme 
The maximum average torque decreased in the proposed 
control scheme because of the currents conducted in the 

negative-torque region. To obtain a larger average torque, 
we can advance the turn-on angle of main winding 
currents as many as possible. Then the average torque 
can be adjusted by changing im1 and the radial forces are 
controlled like previous analysis. 

Let the main winding and radial force winding 
conduct from -22.5°M and 0°M, where im=6A, 
is1=is2=3A. The waveforms of generated torque and 
radial force with FE analysis are shown in Fig.5. FEM 
results suggest that the radial force generated between 
-22.5°M and -15°M is so small that it can be neglected, 
meanwhile, the electromagnetic torque increases 
gradually. It also can be seen that the produced radial 
force increases and the torque decreases as rotor moves 
to 0°M. Therefore, the proposed scheme makes a 
compromise in order to produce average torque and 
radial forces as large as possible. 

R
ad

ia
l f

or
ce

 F
α(

N
)

In
st

an
ta

ne
ou

s t
or

qu
e 
T i

ns
(N

·m
)

Fig.5 Radial force and instantaneous torque from -22.5 
°M to 0 °M with FEM 

IV. LEVITATION CURRENTS CALCULATION 
In the proposed control scheme, the sum of the torque 
generated by the levitation currents im2 and is equals to 
zero. So the magnitude of instantaneous torque produced 
in levitation region should be reduced as many as 
possible to improve the driving efficiency. Given that 
magnitude of a vector composed of the instantaneous 
radial forces Fα and Fβ can be written as, 

2 2 2F F Fα β= +  (26)

The F and T can be expressed as, 

( )
( ) ( )

' 2 2
2 1 2

2 2 2 2 2
2 1 22

f m s s

t m m b s s

F K i i i

T J N i N i i

θ

θ

⎧ = +⎪
⎨

⎡ ⎤= + +⎪ ⎣ ⎦⎩

 (27)

Then an inequation relative to T can be derived as, 
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( ) 2 2
2 1 22 2 t m b m s sT J N N i i iθ≥ +  (28)

When |T| gets a minimum,  

( )2
2

2
1

22
2

22 ssbmm iiNiN +=  (29)

The current im2 can be derived from (28) and (30) as, 

( )
2

2 '2
b

m
m f

N Fi
N K θ

=  (30)

Where, -π/24≤θ≤π/24. 
Fig.6 shows the calculating process of currents 

commands between -7.5°M and 7.5°M. It is seen that 
radial forces Fα* and Fβ* compose F. Then F and rotating 
angle θ are submitted into (30) to calculate im2

*. In 
experiments, the coefficient related with θ is 
precalculated and stored as a look-up table in the 
controller in order to reduce the sampling time of a 
digital signal processor. 

22
βα FF +

( )
,

f m

F

K i
α β

θ′

( )2
b

m f

N F
N K θ′

 
Fig.6 Currents calculating algorithm in levitation region

Fig.7 Comparison of torques with optimized currents 
and constant currents 

Fig.7 shows a set of instantaneous torques produced 
by different currents which generates approximately 
equal radial forces in FEM. It is seen that the optimized 
current im2 generates the minimum torque, which verifies 
the above analysis. 

The torque and radial forces produced by phase A can 
be seen in Fig.8. The given radial force in the α axis is 

60N whereas 30N in the β axis. The currents are 
precalculated with the algorithm as shown in Fig.7. It 
shows that the torque is odd symmetry about zero point 
in [-7.5°, 7.5°] and radial forces are near zero in [-22.5°, 
-7.5°]. So the average torque in [-7.5°, 7.5°] is zero and 
the generated radial forces can be neglected in [-22.5°, 
-7.5°]. 

Faα

Faβ

T a
in

s(N
·m

)
F a

α,
aβ

(N
)

i a(
A

)
isa1ima

isa2

θ(º)

Fig.8 FEM results of radial forces and torque produced 
by phase A with proposed scheme 

Fig.9 FEM results of radial forces and torque waveforms 
with proposed scheme from 0 °M to 360 °M 

The calculated currents and FE results including radial 
forces and torque with the proposed independent control 
scheme are shown in Fig.9. θa is rotor angle of phase A 
defined as θa=0 at an aligned position. Note that the 
currents near the aligned position are smaller than that in 
the other position for the same radial force. The radial 
forces and average torque generated with conventional 
scheme are shown in Fig.10 where the turn-on angle is 
-9° and the turn-off angle is 6°. The magnitudes of radial 
forces and average torque generated with the two 
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different schemes as shown in Fig.9 and Fig.10 are 
approximately same. It is seen that the peak to peak 
amplitude of generated torque with proposed scheme is 
reduced by hybrid excitations. So we can obtain a 
smoother torque by utilizing reasonable currents. 
Similarly, motor’s vibration and noise can also be 
controlled actively by certain current distribution[14]. 
These researches beyond the scope of this paper and will 
be expounded in future works. 

Fig.10 FEM results of radial forces and torque 
waveforms with conventional scheme from 0 ° to 360 ° 

V. CONTROL SYSTEM 
Fig.11 illustrates how the motor’s levitation and rotation 
are achieved simultaneously with proposed control 
scheme. The motor speed is regulated with a PI 
controller, and the output is then converted to the current 
command as the active phase im1

*. The rotor radial 
displacements at the two perpendicular directions are 
measured and then regulated with PID controller, and 

the outputs are desired radial forces Fα* and Fβ*. The two 
desired radial forces and rotor’s rotating angle are 
inputted to the levitation algorithm whose output are 
levitation current command is* and main winding current 
command im2

*. These current commands are all 
calculated in a digital signal processor and tracked by 
inverters in main winding and radial force winding in 
order to rotate and levitate the rotor. 

VI. EXPERIMENTAL RESULTS 
The proposed control scheme was verified 
experimentally. The dimensions of the test motor are 
shown in Table I. The motor is placed horizontally to 
apply the rotor’s weight as an external force in the β 
axis. 

Fig.12 shows the current and rotor’s displacement 
waveforms with proposed control scheme. The turn-on 
angle is -18.75°. It is seen that the currents in levitation 
region such as im2 and is are not influenced by a variation 
of speed.  

Fig.13 shows the waveforms of main winding current 
im, radial force winding current is, rotational speed, and 
rotor radial displacements α and β with the speed 
accelerating from 2000 r/min to 3000 r/min. It is seen 
that the test motor operates stably under the acceleration 
except a small perturbation at the beginning in the β 
axis. 

TABLE I: Dimensions of the test motor 
Number of turns of motor main 14 turns
Number of turns of motor radial force 17 turns 
Arc angle of rotor and stator teeth 15 degree
Outside diameter of stator core 120 mm
Inside diameter of stator pole 60.5 mm
Average air-gap length, l0 0.25 mm
Inner diameter of rotor 30 mm
Radius of rotor pole, r 30 mm
Stack length, h 75 mm

Radial force winding 
current controller

PID 
Controller

PID 
Controller

Fα*

Fβ*
Levitation 
algorithm

Main current 
optimization

is2
*

is1
*

PI 
Controller Main winding 

current controller

ω* +

ω

im2
*

im1
*

_

α*

+
_

+
_

Encoder

Radial 
dispalcement 

sensor

θ

Velocity 
Calculator

β

β*
α

BSRM

Fig.11 Experimental control block 
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Fig.12 Radial displacements and currents waveforms 
with the proposed scheme at a speed of 2000 r/min. 

Fig.13 Acceleration with the proposed scheme 

VII. CONCLUSION 
In the paper, an independent control scheme of 
bearingless switched reluctance motors is analyzed. The 
radial force and torque can be separately controlled by 
different variables. An expression of radial force is used 
to calculate currents in levitation region, whereas motor 
average torque control does not need any mathematical 
model but only a PI controller, which simplifies control 
algorithm.  

The proposed scheme does not need a more memory 
resource to store a large look-up table. It is suitable for 
industrial application. Moreover, the radial force is 
generated around the aligned position where the force 
can be effectively produced. Also, it is better that the 
controls of radial force and torque are not coupled. A 
disadvantage is that a negative torque is produced 
because the descending-inductance region is used for 
levitation. Thus some remedial measures are discussed 
to solve this problem and verified to be effective with FE 
analysis and experiments. 
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