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ABSTRACT
Magnetic devices are used as bearings in impor-
tant practical applications like high speeds, high
vacuum, low temperatures, clean and explosive at-
mospheres. In conventional magnetic bearings the
restoring forces are generated by electromagnets;
in bearingless motors a single element is used for
spinning and positioning the rotor. One way of
achieving this hybrid solution is by rearranging the
windings of an electrical motor in such a way as to
provide both torque and radial restoring forces.

The hardware of those devices comprises an elec-
tromechanical part, sensors, power electronic am-
plifiers and microelectronic circuits for the control.
Any performance improvement achieved by chang-
ing the control software adds practically no cost
to the overall budget. The effort to develop and
implement better control algorithms is, therefore,
justified.

A prototype of a vertical rotor is currently in de-
velopment at COPPE/UFRJ. In its actual stage
the rotor vertical position is kept by a mechanical
bearing and it is driven and horizontally stabilized
by a bearingless motor. Aspects of the modelling
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procedures for the device are reported in this pa-
per, as well as results of an optimal control strat-
egy based on the centralized and decentralized Lin-
ear Quadratic Regulator and its digital implemen-
tation.

INTRODUCTION
Magnetic Bearings and Bearingless Machines are
mechatronic systems with growing technological ap-
plications in fields like high speeds, high vacuum,
low temperatures, clean and explosive atmospheres
[1], [2]. The study of magnetic bearings has reached
a mature stage, as can be seen from the vast amount
of publications, a brief list of which is: [3], [4], [5],
and the previously cited ones.

A more sophisticated version of magnetic bear-
ings has been studied in the last decade: instead of
using distinct elements for spinning and positioning
the rotor, a hybrid solution was devised where mul-
tiple functions are executed by a single Bearing-

less Motor. The literature for this field is not so
vast: [1], [5], [6], [7], [8], [9], [10], [11].

There are three ways to generate the bearingless
effect. One uses Lorentz forces, ([7], [12]) and the
remaining rely on Maxwell forces, obtained through
additional windings, [1], or by splitting the wind-
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ings of a conventional machine ([10], [13]). A split
winding configuration will be studied in this pa-
per: the windings of an induction motor are rear-
ranged in such a way as to simultaneously provide
torque and radial positioning forces. Figure 1 shows
a vertical rotor driven and stabilized by a bearing-
less motor, which is currently in development at
COPPE/UFRJ: [5], [10], [11], [14], [15], [16].
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Figure 1: Prototype views — d = .31m, b = .23m

The hardware of such a device comprises an elec-
tromechanical part, sensors, power electronic am-
plifiers and microelectronic circuits for the con-
trol. Any performance improvement that can be
achieved with the same hardware, by just chang-
ing the control software, adds practically no cost
to a series production. Therefore, the effort to im-
plement better control algorithms is justified. This
paper presents experimental results of a bearingless
machine controlled with a Linear Quadratic Regu-
lator (LQR). The laboratory prototype , the math-
ematical model, the establishment of coupled and
decoupled feedback control laws will be explained.
The experimental results will be discussed.

In the next section a brief description of the sys-
tem will be given, together with some modeling de-
tails of the motor-bearings; after that, the dynamic
aspects of the full system are modeled, and then
the complete mathematical model of the system,
together with the control strategy results obtained
with LQ control laws is presented. Some details
about the implementation, the overall performance
and the conclusions are given in the final sections.

DESCRIPTION
The sensors at the upper part of the prototype mea-
sure displacements in orthogonal directions. The
clearance between the sensor heads and the tar-

gets in the rotor is 0.4mm; security roller bearings
are displayed just above the sensor targets with a
smaller radial gap of 0.3mm. The rotor is passively
supported by the mechanical bearing shown in the
lower position.

The bearingless motor can be considered as a 4-
pole 2-phase induction machine. A sketch of its
stator is seen in figure 2;
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Figure 2: Diagram of the 4-pole 2-phase stator

When the four coils of each phase are connected
in series (A2 to A3, etc) and the phases are fed with
currents with the same amplitude and a 90◦ phase
difference the device generates torque. When the
amplitudes of the currents in the poles of phase
A are independently controlled, but their angles
are the same, and still 90◦ different from those
of phase B, the device is able to spin the shaft
and to keep it at the central position. In phase
B: iB(t) = I0 cosωt; the “poles” of phase A are
fed with independent (base and differential) cur-
rents: iA(t) = I0 sin ωt, ix(t) = ux sin ωt and
iy(t) = uy sin ωt:

il(t) = iA(t) − ix(t) ir(t) = iA(t) + ix(t) (1)

iu(t) = iA(t) − iy(t) id(t) = iA(t) + iy(t) (2)

When a radial displacement is detected, the control
system modifies the amplitudes ux and uy to correct
it. The current amplitudes should be kept within
sufficiently low level in order to avoid saturation
of the motor magnetic circuit. The radial forces
generated by the motor-bearing are

fx = 2kpx + ki[1 − cos(2ωt)]ux (3)

fy = 2kpy + ki[1 − cos(2ωt)]uy (4)
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where x and y are the rotor displacements. It
should be stressed that kp and ki are not constants,
as the formulas above suggest, they depend on the
rotor electrical frequency σω: kp = kp(σω), ki =
ki(σω). If cos(2ωt) could be neglected, a simpler
expression would be attained: fx = kpx+kiux. But
kp and ki still depend on the operating conditions.
Detailed explanations can be found in [9].

SYSTEM DYNAMICS
Figure 3 shows the standard ([2], [4]) reference sys-
tem placed at the mechanical bearing, which is as-
sumed to be a perfect articulation. The center of
mass (CM) position is determined by the angles α
and β. The rotor moments of inertia with respect
to the axes x and y are the same, because of sym-
metry: J = Jx = Jy; the moment of inertia with
respect to z is Iz . Newton’s rotational dynamic
laws are:

Jβ̈ − ωrIzα̇ =
∑

py; Jα̈ + ωrIzβ̇ =
∑

px (5)

where ωr is the angular velocity and py, px repre-
sent the external torques on the device. The gravity
action (simulations show) can be neglected, leaving
only the torques due to the bearingless motor:

px = −fyb cosα and py = fxb cosβ (6)
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Figure 3: The rotor and the reference system

The bearingless forces come from (3) and (4);
with xb and yb denoting the rotor displacement at
position b:
[

fx

fy

]

= 2kp

[

xb

yb

]

+ ki(1 − cos 2ωt)

[

ux

uy

]

(7)

Since cosα ≈ cosβ ≈ 1, because the angles are
very small, (6) and (7) become

[

py

−px

]

= Kp

[

xb

yb

]

+ Ku

[

ux

uy

]

(8)

where Kp = 2bkp and Ku = bki(1 − cos 2ωt). As-
suming again small angles lead to xb = bβ and
yb = −bα; these equations, with (8), are used to
rewrite (5) in vector form

Jθ̈ + ωrIz

[

0 1
−1 0

]

θ̇ = bKpθ + Ku

[

ux

uy

]

(9)

where θ = [β − α]T and the first order term
coefficient, the gyroscopic matrix, will be denoted
by G. In order to display the dynamic equation in
terms of the displacements measured by the sensors
notice that, because of small angles, sinβ ≈ β =
xd/d and sinα ≈ α = −yd/d which amounts to
θ = d−1zd where zd = [ xd yd ]T . The result,
where u = [ux uy]

T is the control vector, is

z̈d + GJ−1żd − bKpJ
−1zd = dKuJ−1u (10)

CONTROLLING THE POSITION

Defining the state vector x = [ xd yd ẋd ẏd ]T it is
possible to transform (10) into the canonical form

ẋ(t) = Ax(t) + Γ(t)u(t) (11)

where A and Γ(t) are (4 × 4) and (4 × 2) matrices
given by

A =

[

0 I2

A21 A22

]

and Γ(t) =

[

0
Γ2(t)

]

(12)

Block I2 is the (2 × 2) identity matrix and

A21 = bdKpJ
−1I2 A22 = −GJ−1

Γ2(t) = dKuJ−1I2

It should be noticed that both Kp and Ku de-
pend, like kp and ki did, on the rotor electrical
frequency σω: Kp = Kp(σω), Ki = Ki(σω); Ku

depends also on t and the gyroscopic matrix G de-
pends on the rotor velocity ωr. This means that
A21 and A22 are constant matrices only in steady-
state conditions. The definition of Ku leads to

Γ2(t) = dbkiJ
−1(1 − cos 2ωt)I2

and a linear model for the steady-state functioning
of the positioning system is:

ẋ(t) = Ax(t) + Bu(t) − Bu(t) cos 2ωt (13)
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where the input matrix B is given by

B =

[

0
B2

]

with B2 = dbkiJ
−1

[

1 0
0 1

]

This is a linear time invariant (LTI) model, with
a slowly varying control input u(t) that also acts,
after modulation by cos 2ωt, as a disturbance signal.
A block diagram is seen in figure 4.
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B - + -ẋ ∫ -x
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6

6
×
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?

Figure 4: LTI model for the positioning system

If one wants to use the reluctance forces in AC
motors cores for positioning purposes, the price to
pay is the high frequency disturbance signal. It is
reasonable to expect that the overall system con-
tains enough mechanical inertias to make it behave
as a low-pass filter. In this case the frequencies in
cos 2ωt would be “absorbed by the mass” and a sim-
pler model would result. Several simulations were
made showing that this is indeed the case, and the
model described in equation (13) can be replaced
by the traditional

ẋ(t) = Ax(t) + Bu(t) (14)

Many of the available control schemes require
models like (14). If an optimal control option is
made, based on the Linear Quadratic Regulator
(LQR), the solution will be

u(t) = F ∗x(t) (15)

Using well known procedures (for example, [4])
F ∗ is found after choosing weighting matrices Q
and R and solving an Algebraic Riccati Equation.
With this strategy F ∗ turns out to be a (2× 4) full
matrix, where few, or almost none, of its elements
are zero, and this results in a great computational
effort placed on the control algorithms. It would,
therefore, be nice to impose a sparser structure to
F ∗, like the following:

F ∗

d =

[

p1 0 d1 0
0 p2 0 d2

]

(16)

Such a matrix allows a decentralized control
structure in which the two input variables are
treated in an independent and uncoupled way, each
one of them depending on just two state variables,
a position and its derivative ([2]). This is called
an optimal, decentralized, PD control. The tradi-
tional LQR theory has been adapted to this de-
centralized restriction. In what may be called the
LQRd problem, there is a search for a decentralized
structure, as above, that is capable of minimizing
the same performance index used for the centralized
case. More information in [4], [5] and [9].

EXPERIMENTAL RESULTS
Figures 5 to 8 below depict the rotor operation at
1500rpm. Figure 5 shows the effects of a decoupled
LQRd control law and figure 6 shows the operation
with a standard PD controller, as reported in [17].
In both graphs the horizontal scale is 50ms/div and
the vertical scale is 0.05mm/div.

Figure 5: Measured time response with LQRd

Figure 6: Measured time response with PD control

These results can be complemented with the cor-
respondent Lissajous graphs shown in figures 7
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and 8, obtained from screen shots with 5s persis-
tence. For these graphs the scale in both axes is
0.1mm/div, and the outer circular borders repre-
sent the maximal rotor displacements.

Figure 7: Measured xy response with LQRd

Figure 8: Measured xy response with PD control

The sampling frequency used was 32.8KHz (sam-
pling period 30.5µs). The computational times of
these algorithms can be seen and compared in Ta-
ble 1, which also shows the results for the LQR,
the centralized case. With a small computational
time, the LQRd algorithm introduces a higher con-
trol flexibility and a better overall performance.

Table 1: Computational times in µs

Controller Sampling period usage
type processing idle %

PD 20.4 9.9 66.9

LQRd 19.8 10.7 64.9

LQR 26.4 3.7 87.9

Figures 9 and 10 exhibit a time scale zoom of the

controller input and output (I/O) signals. There
are 100 samples in the horizontal axis; since the
sampling time is 30.5µs, this leads to an observation
window with width of approximately 3.05ms. The
output signals, seen in the upper part of the graphs,
is the incremental current value ∆i; the input sig-
nals shown in the lower portions of the graphs is
the position error.

Figure 9: LQRd controller I/O signals at 1500rpm

Figure 10: PD controller I/O signals at 1500rpm

CONCLUSIONS
Both controllers maintain the rotor position within
small deviations from the central position, but the
LQRd maximal error is lower than half (25% in
some cases) the maximal values of the PD algo-
rithm.

In conclusion, the LQRd controller has a better
performance in terms of computational time and
positioning, besides a straightforward design proce-
dure. The main advantage of PD or PID controllers
is the availability of standard algorithms. Due to
the particular decentralized scheme used here, the

－479－



LQRd can be viewed as a PD controller with opti-
mally chosen parameters.
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