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ABSTRACT 
Magnetic bearings have advantages such as no friction 

loss, no abrasion, and lubrication-free operation. However 
they are not widely used due to their high cost and large 
size. In order to solve these problems, a self-bearing 
motor having a simple structure with distributed windings 
is proposed. The rotor consists of a permanent magnet 
and an iron yoke, which rotate in a body. The stator 
consists of a six-phase distributed winding and is installed 
between a permanent magnet and a back yoke of the rotor. 
A Lorentz force is generated by the stator current, and the 
rotation speed and radial position of the rotor are 
controlled by this force. In this study, the rotating torque 
and bearing force are analyzed theoretically, and a 
method for their control is discussed. A simple 
experiment confirms that the proposed self-bearing motor 
can be realized. 
 
INTRODUCTION 
In recent years, there has been an increasing demand for 

improving the durability of small motors and reducing the 
noise generated by them [1-4]. A magnetic bearing is 
useful in satisfying these demands. Various types of small 
motors that use an active magnetic bearing (AMB) or a 
self-bearing motor have been proposed. However, the 
AMB is not widely used since it is expensive and its 
dimensions are significantly larger than those of 
mechanical bearings. As a result, the development of a 
smaller and relatively low cost AMB is desired. 
In order to satisfy this demand, a six-salient-pole-type 

AMB has been proposed [2]. The miniaturization and 
reduction in the cost of the AMB have been achieved by 
reducing the number of salient poles and coils in a 
conventional magnetic bearing. However, since the 
miniaturization and large bearing force are reconciled, the 
structure has become complicated. As a result, further 
miniaturization of the six-salient-pole-type AMB is 
difficult, and a simpler structure is required. 

In recent years, a miniaturized brushless DC motor has 
been developed. In particular, the miniaturization of a 
slotless stator-type motor has been remarkable, and it is 
commercially available as a motor with a diameter of 
2mm. Since the magnetic bearing has a structure that is 
similar to that of the brushless motor, the structure of a 
miniaturized magnetic bearing can be modeled similar to 
that of a micro brushless DC motor. Then we propose a 
Lorentz-force-type slotless AMB [4]. A schematic 
drawing of the proposed AMB is shown in figure 1. A 
distributed winding without an iron core is installed in a 
stator, and a cylindrical permanent magnet fixed to a yoke 
is attached to a rotor. Subsequently, a bearing force is 
generated in accordance with a Lorentz force produced by 
the stator current and a magnetic field produced by the 
permanent magnet. Usually, the force that can be 
generated by an AMB by employing the Lorentz force is 
smaller than that generated by a typical magnetic bearing 
[5]. For this reason, it is necessary to supply large 
currents in order to negate the unstable force of the 
permanent magnet; however, this results in a decrease in 
the power consumption. In order to prevent the 
occurrence of this problem, the permanent magnet of the 
rotor is fixed to the yoke; as a result, the unstable force of 

 
FIGURE 1: Schematic of Slotless SBM 
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the permanent magnet becomes zero. The proposed 
magnetic bearing has a simple structure; therefore, its 
miniaturization and cost reduction can be achieved. 

   
  (a) Rotating Torque  (b) Bearing Force (c) Rotating Torque and Bearing Force

FIGURE 2: Generation of Rotating Torque and Bearing Force 

In this study, a self-bearing motor having a structure 
similar to that of a slotless AMB has been proposed. By 
combining an AC motor and a magnetic bearing, the 
AMB can be miniaturized further and its price can be 
reduced. The bearing force and rotation torque are 
analyzed theoretically, and a method for their control is 
derived. The result of the analysis is then confirmed using 
a simple experimental setup. 

 
SLOTLESS SELF-BEARING MOTOR 
The outline of the proposed self-bearing motor is shown 

in figure 1. The self-bearing motor carried out position 
control with two radial degrees of freedom and generates 
a motor torque. A rotor consists of a cylindrical two-pole 
permanent magnet and an iron yoke. The unstable 
attractive force of the permanent magnet becomes zero 
since an airgap between the permanent magnet and iron 
yoke does not change. The stator consists of a six-phase 
distributed winding without a core, and it is inserted 
between the permanent magnet and the yoke of the rotor. 
The principle of generation of a torque and force is 

shown in figure 2. For simplicity, the figure illustrates the 
case in which the number of turns of the stator winding is 
one. If currents are supplied to the stator winding as 
shown in figure 2 (a), a Lorentz force is generated as 
denoted by the black arrows in the figures. Consequently, 
a motor torque is generated on the rotor as a reaction 
force. On the other hand, if currents are supplied as 
shown in figure 2 (b), a bearing force is generated as 
shown in the figure. By supplying the summation of the 
torque current and bearing current as shown in figure 2 
(c), both the motor torque and bearing force are generated. 

The motor torque and bearing force are controlled by 
changing the amplitude and the phase of stator current. 

 
(a) x-y 

(b) z-θ 

FIGURE 3: Coordinate Axis

 
Radial Force and Rotating Torque 
Figure 3 shows the coordinate axis used for the analysis 

of the rotating torque and bearing force. Figure 3 (a) 
shows the section perpendicular to the motor shaft, and 
figure 3 (b) shows the development along the 
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circumference of the stator winding. A magnetic flux that 
travels to the outside of the rotor is defined as positive. 
 The winding has a hexagonal shape as shown in figure 2. 
Hence, it can be divided two parts. One is the center of 
the winding, that is parallel to the axial direction. The 
other part comprises the top and bottom parts of the 
winding, and is slanted to turn the direction of the wire. 
The angular positions of the parallel part are expressed as  
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where m is the coefficient corresponding to each phase, 
a-phase→0, and f-phase→5, n is the total number of turns, 
k is the turn number, and θ0 is the angular position of the  
+a-phase winding. 
 In order to simplify the analysis, it is assumed that the 
magnetic field generated by the current is weaker than 
that generated by the permanent magnet of the rotor, and 
a sinusoidal waveform distribution of the magnetic flux 
density is obtained. Then, the magnetic flux density 
distribution in the airgap is 
 ( ) cos( )gB Bθ θ ψ= −  (2) 
where B is the amplitude of the magnetic flux density, 
and ψ is the angular position of the rotor. The stator 
currents are the summation of the bearing current and 
motoring current. Hence, the currents are expressed as 
follows. 
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where id is the direct axis current, iq is the quadric axis 
current, Am is the amplitude of the motor current, and φm 
is its phase.  
First, the case of n = 1 is considered. The Lorentz force 

is calculated by Fleming’s law as 
 ( )phase g phase phase pf B i lθ± ±= ∓  (4) 
where lp is the length of the parallel part. The torque 
produced by the Lorentz force becomes 
 phase phaserfτ ± ±=  (5) 
where r is the radius of the winding. The radial force 
becomes  
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The total torque and force are the summation of (5) and 

(6), respectively. Then we have 
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The angular position of the turn part can be expressed as 
follows. 
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where lt is the length of the turn part. The Lorentz force 
of a small distance in this part is calculated as 

 ( ( ))
sint phase g t phase phase

zf B z iθ
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Δ
Δ = ⋅ ⋅∓  (9) 

where α is a wire angle with its horizontal axis passing 
through the turn part, and it is expressed as 
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The Lorentz force in the turn part consists of two 
components force in the axial direction, Δftz, and force in 
the radial direction, Δftt. Each force is expressed as 
follows. 

α
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The force in the radial direction becomes 
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and the torque at the turn part is calculated as follows. 
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The radial force of each phase is calculated as 
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The total radial force is the summation of the forces of all 
phases, then, 
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Since the turn part comprises two parts, the total torque 
and radial force become 
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FIGURE 5: Open-loop Torque Controller 

 
FIGURE 4: Closed-loop Torque Controller 
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 For n = 3, the interval between the phases of the wires is 
π/9. Therefore, the rotating torque can be expressed the 
summation of (16), where θ0=−π/9, 0, and π/9. Then, we 
have 
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Similarly, the following equations are obtained. 
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Closed-loop Torque Control 
If the angular position of the rotor can be obtained, the 

stator current can be calculated by (4). Then, assuming 
θ0=0 and , the rotating torque 
and bearing force become 

f k k

k i

i
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=

=

m t
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Hence, the rotating torque can be controlled by Am, and 
the bearing force can be controlled by id and iq. 
 The block diagram of a closed-loop torque controller is 
shown figure 4. The radial position controller is a 
standard PID controller, while the rotating speed 
controller is a PI controller. 
 
Open-loop Torque Control 
 If the angular position of the rotor cannot be obtained, 
the rotating torque can be passively controlled by a 
current with constant amplitude and frequency. Let 
φ ω=  and the phase difference between mφ  and ψ  
denoted by / 4m mφ φ ψ πΔ = − +

sin( )mk k A
 then, we have 

n m mτ φ= Δ  (23) 

Hence, the torque is passively controlled by mφΔ . If a 

load torque is small, that is ,  can be 
approximate to 

0mφΔ ≈
/ 4 mπ φ+ . Therefore the stator current 

can be calculated by substituting / 4 mψ π= φ+  in 
equation (3).  
 The block diagram of an open-loop torque controller is 
shown in figure 5. An angular position detector is not 
required; therefore, the control system becomes simpler. 
 
EXPERIMENTAL RESULTS 
Experimental Setup 
In order to confirm the above mentioned results, a simple 
experimental setup was designed and tested. The 
experimental setup is shown in figure 6. For simplicity, 
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the rotor top was supported using a ball bearing; therefore, 
the rotor had three degrees of freedom x, y, and around z. 
The self-bearing motor was attached to the lower part of 
the rotor, and a rotary encoder was attached to the upper 
part for measuring the angular position of the rotor.  
The rotor consisted of a shaft, permanent magnet, back 

yoke, and one part to fix them together. A two-pole 
cylindrical neodymium magnet was used. The outer 
diameter, inner diameter and length of the permanent 
magnet were 22 mm, 8 mm, and 22 mm, respectively. 
The back yoke was composed of S45C. Its outer and 
inner diameters are 38 mm and 34 mm, respectively. The 
distribution of the magnetic flux density between the 
permanent magnet and the back yoke is shown in figure 7. 

The curve drawn using the squares denotes the result of 
the flux density measured on the surface of the permanent 
magnet, and the curve drawn using the circles denotes the 
result of the flux density measured on the inner surface of 
the yoke. From these results, it is confirmed that the 
magnetic flux density distribution is sinusoidal, and its 
mean amplitude is approximately 0.6T.  

FIGURE 6: Experimental Setup 

 
FIGURE 7: Flux Density Distribution 

 
FIGURE 8: Control System 

The stator consists of the winding and a plastic collar for 
fixing it. The copper wire has diameter of 0.26mm and 
the number of turns is 55. 
 The control system is shown in figure 8. A digital signal 
processor (DSP) has been used for control. The DSP 
receives signals from two displacement sensors through 
A/D converters and the angular position of the rotor 
through an up/down counter. Then the DSP calculates the 
stator current. The stator currents are then output to a 
power amplifier through a D/A converter. A 
current-output-type amplifier is used as the power 
amplifier.  
 
Motor Torque and Bearing Force 
First, the results of measuring the motor torque are 

shown. While carrying out the position control, a constant 
torque current was supplied. The rotation of the rotor was 
stopped by a force applied using a force gauge connected 
to the shaft. Then, the rotating torque was calculated from 
the value of the force gauge. The result is shown in figure 
9. From this result, it was confirmed that the torque was 
linear to the torque current. However, the measured 
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values were larger than the theoretical values. One of the 
reasons for this was that the stator winding was not ideal. 
The measurement results of the bearing force are shown 

in figure 10. While carrying out the position control of the 
rotor, a constant disturbance force was applied in the x 
direction, and the current was measured when the 
displacement became zero. The circles and square denote 
the id and iq values, respectively. This result shows that 
the force is proportional to the current.  
 
Impulse Responses 
 The impulse responses at 0 rev/min were measured for 
confirming the position control. The results are shown in 
figure 11. Figures 11 (a) and (b) show the results of the 
impulse responses obtained using the closed-loop torque 
controller, open-loop torque controller, respectively. Both 
these impulse responses settled in 0.2 s, which confirmed 
that stable control was carried out. 
 
Rotation Test 
Figure 12 shows a trajectory of the rotor motion in the 

x-y plane at 2,000 rev/min and 5,000 rev/min, obtained 
using the closed-loop torque controller. In both cases, the 

amplitude of vibration was approximately 25 mm, and the 
rotor could rotate stably. Figure 13 shows the 
corresponding results obtained using the open-loop torque 
controller. In this case, the orbit was unstable compared 
to that obtained using the closed-loop torque controller. In 
particular, the orbit obtained at 5,000 rev/min was more 
unstable than that obtained at 2,000 rev/min. One of the 
possible reasons for this is that mφΔ  changes by a 
perturbation of the rotation torque. The change of mφΔ
causes an error of the bearing force, and it influences the 
radial position control. From these results, it is obvious 
that the closed-loop torque controller is suitable for 
achieving high-speed rotation. Hence, if the use of an 
encoder is not possible, a sensorless vector control 
method should be employed. 

 
FIGURE 9: Rotating Torque 

FIGURE 10: Bearing Force 

(a) Closed-loop Torque Controller 

 
(b) Open-loop Torque Controller 

FIGURE 11: Impulse Responses (0 rev/min) 

Finally, the acceleration test results are shown in figure 
14. This test was performed using the closed-loop torque 
controller. The rotation speed was changed from 0 to 
5,000 rev/min, and the motor current Am, rotation speed, 
and displacement were measured. The torque current was 
limited to 0.4 A. The rotation speed became 5,000 
rev/min after 2 s. Although the displacement deviated 
slightly from zero, it was confirmed that the rotor could 
be supported stably during the acceleration. 
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CONCLUSIONS 
In this study, a novel self-bearing motor is proposed 

using a slotless distribution winding. The proposed 
self-bearing motor is capable of being miniaturize 
because it has a simple structure. The motor torque and 
bearing force are derived analytically, and a method for 
the control of the rotation speed and position is discussed. 
Experimental results show that the proposed self-bearing 
motor can be realized and it has high potential for 
high-speed rotation. 
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FIGURE 14: Acceleration Test 

   (a) 2,000 rev/min        (b) 5,000rev/min 

FIGURE 12: Orbit Obtained Using Closed-loop Torque 
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   (a) 2,000 rev/min        (b) 5,000rev/min 

FIGURE 13: Orbit Obtained Using Open-loop Torque 
Controller 
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