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ABSTRACT
Synchronous vibrations in rotors suspended by active
magnetic bearings are caused by an unbalanced mass.
These are characterized as sinusoidal disturbances with
a frequency that is equal to the rotational speed. In the
past, robust controllers based on H∞ loop shaping de-
sign procedure (LSDP) and Q-parameterization theory
have been employed to reject sinusoidal disturbances
of a particular frequency. Variations or inaccurate
measurements of the rotor operating speed, as seen in
real life, motivate us to treat the frequency of disturbance
as an uncertain parameter. In this paper, a novel robust
controller design procedure is applied to an active
magnetic bearing system.

INTRODUCTION
In recent years, active magnetic bearings (AMBs) are
used in a number of industrial applications, viz., hard
disk drives, flywheel energy storage systems and milling
applications. In these applications, it is highly desirable
to reject sinusoidal disturbances which occur due to mass
imbalances. From [7], it is known that the frequency of
this periodic disturbance is equal to the rotational speed
of the spindle. In applications such as micro-milling, the
rotational speed of the spindle could deviate by a small
percentage from its intended operating speed (owing to
tool-workpiece interaction), which correspond to varia-
tions in the frequency of sinusoidal disturbance affecting
the plant. Hence, we regard this variation as an uncer-
tainty and address the problem of robust control design
against disturbance model uncertainty.

Rejecting sinusoidal disturbances in magnetic bear-
ings is also known as unbalance compensation. A com-
monly used approach to design robust controllers is
based on the assumption that the rotational speed is con-
stant. An analytical model for a magnetic bearing spindle

incorporating the influence of mass imbalance was first
given by Matusumura et al in [7] and [8]. Two different
models were presented that describe the rotation about a
geometric axis and the so-called inertia-axis. The same
authors successfully applied an H∞ loop shaping design
procedure (LSDP) to robustly stabilize a magnetic bear-
ing system against uncertainties in the plant model in [4].
The LSDP method was extended to reject sinusoidal dis-
turbances of a particular frequency in [5]. The design
was aimed at rejecting disturbances of a particular fre-
quency, in order to ensure rotation about a fixed geomet-
ric axis.

Mohemed et. al. proposed the use of Q-
parametrization technique for imbalance compensation
in [10]. Here, a simplified system model is considered in
order to achieve spindle rotation about the inertia axis
and geometric axis respectively. The approaches pre-
sented in [4] and [10] rely on choosing a particular con-
troller from the set of parameterized sub-optimal H∞
controllers. The essential design philosophy is to have
a controller with a pole on the imaginary axis at the de-
sired frequency. Apart from H∞ based controllers, use
of other techniques based on using a notch filter in closed
loop and from adaptive control literature are given in [6]
and [15] respectively.

The robust control design problem for an LTI sys-
tem with uncertainty is generally understood to be non-
convex. In a recent publication, Dietz et. al. [2] have
considered the robust synthesis problem when the un-
certainty only affects a disturbance filter at the plant in-
put. Based on a suitable combination of transformations
found in the literature, a solution to the related synthesis
problem was given as a set of Linear Matrix Inequalities
(LMIs).

In this paper, we consider the application of this
control design procedure to an active magnetic bearing
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system. The class of sinusoidal disturbance sig-
nals, with time-varying frequency, can be effectively
modeled as the output of an uncertain filter, excited
by an impulse. The plant is assumed to be an LTI system.

MODELING
A horizontal-spindle suspended by two radial active
magnetic bearings is shown in Fig. 1. Each AMB con-
sists of four electro-magnets with two in the vertical and
two in the horizontal plane. The electro-magnets on the
left side and in the vertical plane are named as l1, l2. The
ones in the horizontal plane are named as l3, l4. A simi-
lar naming scheme is used for the electro-magnets on the
right side of Figure 1.

Each pair of opposite electro-magnets operates in a
differential mode. That is, if I denotes the equilibrium
current, an incremental change leads to currents I + i
and I − i in opposite electro-magnets. The rigid body
dynamics of such a magnetic suspension system can be
found in [7] and [8].

The axis system XG-ZG lies at the geometric center
of the spindle and XI -ZI lies at the inertia center. The
radial offset in the position of OG and OI is attributed
to the presence of unbalanced mass. For micro-milling,
it is required to ensure rotation about a fixed geometric
axis.

Rotation about geometric axis
It is desired to regulate the deviations in the gap lengths
between the electro-magnets and the XG −ZG axis sys-
tem. For brevity, the vertical and horizontal variables are
grouped together as

xv =
[
gr1 gl1 ġr1 ġl1 ir1 il1

]T

xh =
[
gr3 gl3 ġr3 ġl3 ir3 il3

]T

uv =
[
er1 el1

]T

uh =
[
er3 el3

]T
.

(1)

The variables g and e denote the deviations in gap length
and the supplied voltage respectively at the subscripted
electro-magnet. As shown in [7, 8], considering small
deviations from the equilibrium position of spindle, the
following state-space equations can be derived:[

ẋv

ẋh

]
=

[
Av ωAvh

ωAhv Ah

] [
xv

xh

]
+

[
Bv 0
0 Bh

] [
uv

uh

]
+ ω2

[
Ev 0
0 Eh

]
v

y =
[
Cv 0
0 Ch

] [
xv

xh

]
.

(2)
Here, v denotes the disturbance and y the mea-
sured deviations in the gap lengths, i.e. y =

r3l3

r2

r1l1

l2

ll lr

W
OI

XI

ZI

ZG

XG

X

Z
OG

Figure 1: HORIZONTAL SPINDLE IN MAGNETIC
BEARINGS

[
gr1 gl1 gr3 gl3

]T
. Note that the disturbance v

is amplified by the square of the rotational speed of the
spindle. Further, this disturbance is sinusoidal and char-
acterized by the mass imbalance related parameters ε, τ
and initial offsets µ, λ as

v =


ε cos(ωt + µ)
τ cos(ωt + λ)
ε sin(ωt + µ)
τ sin(ωt + λ)

 . (3)

PROBLEM FORMULATION
Consider the problem of designing a robust H∞-optimal
controller for the interconnection of Figure 2, in order to
obtain a guaranteed performance level for all disturbance
signals that are given by an uncertain filter. Let the fol-
lowing minimal realization of the linear time-invariant
(LTI) plant P be given:

P :=

 A Bv Bu

Cz Dzv Dzu

Cy Dyv 0

 ,

in which A ∈ Rn×n. Assume that the disturbance filter
W is perturbed by an uncertain element ∆ that is allowed
to be any element in a given set ∆. The dependence on ∆
is modelled by a linear fractional transformation, written
as ∆?W = Wvw +Wvp∆(I−Wqp∆)−1Wqw, in which
the nominal filter W can be represented as

W :=
(

Wqp Wqw

Wvp Wvw

)
=

 AW Bp Bw

Cq Dqp Dqw

Cv Dvp Dvw


where AW ∈ RnW×nW . All eigenvalues of AW are as-
sumed to lie in the left half plane since the controller is
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unable to influence the dynamics of W . The uncertain
element ∆ can consist of various types of norm-bounded
non-linearities or dynamic time-varying operators.

P W

∆

p

q

u

z
v w

y

K

Figure 2: Systems interconnection with uncertain filter
W

Problem Statement
For a given filter W and set of uncertainties ∆, design
an LTI controller denoted by

K :=
[

AK BK

CK DK

]
(4)

that, once interconnected with P , leads to a guaranteed
robust H∞-performance level from w to z.

SYNTHESIS PROCEDURE

M

∆

pq

z w

Figure 3: Standard interconnection for robust perfor-
mance analysis

In the sequel, we will work with the so called IQC
(Integral Quadratic Constraints) characterization of the
uncertainty block. It belongs to a set ∆, which in-turn is
described by a structured matrix Π, called the multiplier.
The set ∆ contains 0 as an element. The input-output
channels of the uncertainty block satisfy the following
quadratic constraint.

〈 (
∆q
q

)
,Π

(
∆q
q

) 〉
L2+

� 0, ∀q ∈ L2+, ∀∆ ∈ ∆.

(5)
The matrix Π ∈ Π is assumed to be a static mul-

tiplier. The set Π allows one to capture various types

of non-linearities or time-varying operators, [9, 3]. In
particular, for a single, possibly time-varying parameter
δ ∈ [−1, 1], repeated such that ∆ = δI , condition (5)
holds for all elements Π of

ΠDG :
{(

−D G
G′ D

)
: D � 0, G = −G′

}
(6)

For the following theorem, let us be given a stable
transfer matrix M with the realization

M :=
(

Mqp Mqw

Mzp Mzw

)
=

 A Bp Bw

Cq Dqp Dqw

Cz Dzp Dzw

 .

(7)

Theorem 1 For a given system M in Figure 3, we have a
robustH∞-performance level smaller than γ, if for some
Π ∈ Π there exists X � 0 such that

(
..

)′


0 X 0 0
X 0 0 0
0 0 Π 0
0 0 0 J




I 0 0
A Bp Bw

0 I 0
Cq Dqp Dqw

0 0 I
Cz Dzp Dzw

 ≺ 0

(8)
where

J =
(
−γI 0

0 1
γ I

)
. (9)

Proof: see [1, 13].

In nominal H∞-synthesis, Theorem 1 is consid-
ered for the closed loop system matrices and applying
a linearizing variable transformation (see [13]) removes
the bilinearity between controller parameters and
Lyapunov matrix X . In case the system dynamics are
uncertain, it is not known how to render the synthesis
problem tractable. Hence, usually controller/scalings it-
erations are employed to obtain solutions. We will show
that for the particular class of systems as introduced in
the previous section, no such iterations are required.

Robust H∞-synthesis with static scalings
In order to apply the robust H∞-norm characterization
(8) in Theorem 1 we put the problem in the standard
robust control synthesis framework by merging the dy-
namics of W with the plant P to obtain the following
realization of the extended plant:

A BvCv BvDvp BvDvw Bu

0 AW Bp Bw 0
0 0 I 0 0
0 Cq Dqp Dqw 0
0 0 0 I 0

Cz DzvCv DzvDvp DzvDvw Dzu

Cy DyvCv DyvDvp DyvDvw 0


. (10)
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(
A

Cz

)
=


AT11 + BuM̄1 −AT12 + BvCv + T12AW + BuM̄2 A + BuNCy BvCv + T12AW + BuNDyvCv

0 T22AW 0 T22AW

K̄1 K̄2
X11A + L1Cy

X21A + L2Cy

X11BvCv + X12AW + L1DyvCv

X21BvCv + X22AW + L2DyvCv

CzT11 + DzuM̄1 −CzT12 + DzvCv + DzuM̄2 Cz + DzuNCy DzvCv + DzuNDyvCv


(*)

As usual we assume that Dyu = 0 without loss of gener-
ality.

Theorem 2 Suppose we are given the interconnection in
Figure 2, the uncertainty set ∆ and scalings Π ∈ Π
satisfying (5). Let matrices T,X, K̄, L, M̄ be partitioned
as

T =
(

T11 T12

T ′12 T22

)
, X =

(
X11 X12

X ′
12 X22

)
(11)

and(
M̄
K̄

)
=

(
M̄1 M̄2

K̄1 K̄2

)
, L =

(
L1

L2

)
in which T11, X11, K̄1, M̄1, L

′
1 and

T22, X22, K̄2, M̄2, L
′
2 have n and nW columns re-

spectively. Then, there exists a controller such that the
robust H∞-norm from w → z is at most γ if there exists
{T,X, K̄, L, M̄ , N} and Π ∈ Π for which

(
..

)′


0 I 0 0
I 0 0 0
0 0 Π 0
0 0 0 J




I 0 0
A Bp Bw

0 I 0
Ce Dqp Dqw

0 0 I
Cz Dzp Dzw

 ≺ 0,

(12)
T11 0
0 T22

I T12

0 T22

I 0
T ′12 T22

X11 X12

X21 X22

 � 0, (13)

where A,Cz are given in (*) at the top of the page, J is
given by (9) and

Bp =


BvDvp + T12Bp + BuNDyp

T22Bp

X11BvDvp + X12Bp + L1Dyp

X21BvDvp + X22Bp + L2Dyp

 ,

Bw =


BvDvw + T12Bw + BuNDyw

T22Bw

X11BvDvw + X12Bw + L1Dyw

X21BvDvw + X22Bw + L2Dyw

 ,

Dzp = DzvDvp + DzuNDyvDvp,
Dzw = DzvDvw + DzuNDyvDvw,
Ce =

(
0 Cq 0 Cq

)
.

(14)

Note that all boldface symbols depend on the decision
variables in an affine fashion.

Moreover, an application of the Schur com-
plement formula renders condition (12) affine in
{γ,Cz,Dzp,Dzw} which allows to infimize γ and com-
pute sub-optimal controllers.

Proof: The result is obtained by combining two
transformations taken from the existing literature. The
first variable transformation is taken from [13] and essen-
tially convexifies the bilinearity between the closed loop
system matrices and the Lyapunov matrix as present in
(8). For notational reasons, we introduce the following
abbreviation for the extended plant (10):

Ã B̃p B̃w B̃
0 I 0 0
C̃q Dqp Dqw 0
0 0 I 0

C̃z D̃zp D̃zw D̃zu

C̃ Dyp Dyw 0


. (15)

In fact, the robust H∞-synthesis conditions in [13]
amount to the existence of variables {X, Y,K,L, M,N}
and Π ∈ Π for which(

Y I
I X

)
� 0, (16)

and (12) holds with the substitution

A →
(

ÃY + B̃M Ã + B̃NC̃

K XÃ + LC̃

)
,

Bp →
(

B̃p + B̃NDyp

XB̃p + LDyp

)
,

Bw →
(

B̃w + B̃NDyw

XB̃w + LDyw

)
,

Cz →
(

C̃zY + D̃zuM C̃z + D̃zuNC̃
)
,

Dzp → D̃zp + D̃zuNDyp,

Dzw → D̃zw + D̃zuNDyw,

Ce → Cq =
(

C̃qY C̃q

)
,

(17)
corresponding to the realization (10). The coupling con-
dition (16) is related to positivity of the Lyapunov matrix
and therefore implies nominal stability of the closed loop
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system. Condition (12) still remains non-convex due to
bilinearity between scalings Π and Cq = (C̃qY C̃q).
By using the particular structure seen in realization ma-
trices (10) we can overcome this trouble. In order to do
so, with Y partitioned similar as T in (11), the mapping
Y → T , defined by (see [12, 11])

T22 = Y −1
22 , T12 = −Y12Y

−1
22 , T11 = Y11 + Y12T

′
12

is bijective on the space of symmetric matrices.
Next, we apply a congruence transformation on (12),

when substitutions have been performed as in (17), by
left- and right-multiplication of the first row/column with I T12 0

0 T22 0
0 0 I

 and

 I 0 0
T ′12 T22 0
0 0 I

 (18)

respectively. What remains is condition (12) with sub-
stitutions performed as indicated in (14). Similarly, we
left- and right multiply the coupling condition (16) with
the first and second term in (18) respectively, resulting
in (13). Since Ce in (14) now no longer depends on the
decision variable Y , condition (12) is in fact affine in the
variables X, T, K̄, L, M̄ , N and scalings Π.

The controller reconstruction formulae are taken from
[13], where further details can be found. In order to re-
construct the controller matrices, let

Y =
(

T11 + T12T
−1
22 T ′12 −T12T

−1
22

−T−1
22 T ′12 T−1

22

)
(19)

and find matrices U, V such that UV T = I −XY . Then
with (

K̂

M̂

)
=

(
K̄
M̄

) (
I 0

T ′12 T22

)−1

the controller matrices can be obtained as

DK := N,

CK := (M̂ −DKC̃X)U−T ,

BK := V −1(L− Y B̃DK),
AK := V −1

(
K̂ − V BKC̃X

−Y B̃CKUT − Y (Ã + B̃DKC̃)X
)
U−T .

(20)

Remark 3 We strongly emphasize that no assumption
was needed on the structure of the multiplier Π ∈ Π.
This means that robust synthesis is possible for any set
of multipliers satisfying (5). In particular, suitable mul-
tiplier classes for multi-parameter regions described by
polynomial inequalities can be constructed by relaxing
condition (5) using sum-of-squares techniques. For an
overview on different relaxation schemes, see [14].

Table 1: MODEL PARAMETERS

Parameters of the model (SI units)
m 13.9 (kg)
Jz 0.01348 (kg/m2)
Jx 0.2326 (kg/m2)

ll, lr 0.13 (m)
fl1,r1 90.9 (N)

fl2∼l4 , fr2∼r4 22 (N)
Il1,r1 0.63 (A)

Il2∼l4 , Ir2∼r4 22 (N)
W 5.5× 10−4 (m)

Remark 4 The computational complexity of the system
of LMIs could be reduced by eliminating the controller
parametrs in the the robustH∞-synthesis. The interested
reader is referred to [2] for further details.

CONTROL OF THE AMB SYSTEM
We now apply the control design procedure to an AMB
system with model parameters given in Table 1, [4]. Our
primary interest for the closed loop system, is the sup-
pression of sinusoidal disturbances. Hence, we adopt an
S/KS design procedure based on the interconnection of
Figure 4. When the uncertainty is time invariant, the cor-
responding optimization problem is to: Find an LTI con-
troller K that minimizes the value of γ such that

max
δ∈[−r,r]

∥∥∥∥ Wp(I + G0K)−1(δI ∗W )
WuK(I + G0K)−1(δI ∗W )

∥∥∥∥
∞

< γ. (21)

However, we regard the uncertainty as time-varying un-
certainty and minimize the L2 gain of the closed loop
system. The plant G0 is an LTI system corresponding to
a fixed rotational speed of 1200 rpm (125.6637 [rad/s]).
The weighting functions on the sensitivity and the con-
trol input are choosen as

Wp =
10(0.5s + 2)

(s + 2× 10−2)


200 0 0 0
0 200 0 0
0 0 350 0
0 0 0 350

 ,

(22)

Wu =
10−4(s + 100)
(10−5s + 100)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (23)

The disturbance v entering the plant interconnection
is a 4-channel input in accordance with (3). Recall that a
sinusoidal signal of frequency ω0(1+ δ) can be modeled
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∆

w

Wp Wu

zuzp

ve

Figure 4: Interconnection of example.

as the output of the autonomous system

ξ̇ =
(

0 ω0(1 + δ)
−ω0(1 + δ) 0

)
ξ, ξ(0) =

(
1
0

)
,

(24)
in which δ is the time-varying parameter bounded by r.

Since the algorithm outlined in the previous section
requires the filter to be stable, we slightly perturb the sys-
tem matrix in (24) by adding a non-zero damping term.
To be precise, the following realization is chosen to rep-
resent our disturbances.

ξ̇ =
(

0 ω0

−ω0 −2ζω0

)
ξ +

(
1
0

)
w

+
(

0 ω0

−ω0 −2ζω0

)
p

q =
(

1 0
0 1

)
ξ

v =
(

0 2ω0

)
ξ +

(
0 2ω0

)
p + κw,

(25)
and the parameter trajectory δ(t) satisfies δ(t) ∈ [−r, r]
for all t. Closing the uncertainty channel amounts to set-
ting p = δ(t)q. If the parameters are time-invariant, i.e.
δ(t) = δ for some δ ∈ [−r, r], the dynamical system
(27) corresponds to the uncertain filter

Fδ(s, δ) = δI ? F (s) = κ +
2ζωδs

s2 + 2ζωδs + ω2
δ

, (26)

in which ωδ = ω0(1 + δ). Hence, the system matrices of
the filter W are given as AW Bp Bw

Cq Dqp Dqw

Cv Dvp Dvw

 =


0 ω0 0 ω0 1
−ω0 −2ζω0 −ω0 −2ζω0 0

1 0 0 0 0
0 1 0 0 0
0 2ω0 0 2ω0 ε


. (27)

Discussion of results
We first compute a nominal controller without consider-
ing an uncertainty in the weighting filter by minimizing

the H∞ norm from w to the output channels, using the
LMI based solver in MATLAB (hinfsyn). This design is
then compared to the controllers obtained by the proce-
dure described in this paper for r ∈ {0.005, 0.01, 0.02}.
The damping for all the designs is taken to be ζ = 10−5.
Moreover, we set κ = 0.01, which is merely a tuning
variable.

Figure 5 shows the frequency response of the closed
loop sensitivity for the nominal design as well as the
three robust designs. We observe that the notch (signify-
ing disturbance rejection) is wider for the robust designs.
The low frequency gain is reduced at the expense of an
increased gain in the range 300-1000 rad/s.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

ω[rad/s]

σ m
ax

Sensitivity − maximum singular value

 

 

r−0.005
r−0.01
r−0.03
Nominal

Figure 5: Frequency response of (I + GK)−1.

For a detailed analysis, consider the zoomed in plot of
the sensitivity in Figure 6. For most frequencies in the re-
gion of interest [ω0(1−r), ω0(1+r)], the robust designs
yield better disturbance attenuation than the nominal de-
sign. However, at the nominal frequency ω0 = 1200
rpm, the robust design corresponding to r = 0.03 per-
forms worse, a fact which also holds for the other two
robust designs. This is due to the fact that the robust syn-
thesis algorithm aims at reducing the gain over a wider
frequency range, which inevitably results in a less sharp
notch.

When the three robust designs are compared to one
another, it should be observed that increasing the param-
eter bound from 0.005 to 0.03 does not lead to better at-
tenuation in the frequency region of interest. In other
words, we do not see any trade-off in the performance
for different parameter bounds. Moreover, the deteriora-
tion in performance as the parameter bound r grows is
also seen by the increased values of γ, going from 3 to
10 to 30 for the parameter bounds 0.005, 0.01 and 0.03
respectively. This is clearly seen as an increased gain in
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the sensitivity plots.

121 122 123 124 125 126 127 128 129 130
10

−4

10
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ax

Sensitivity − maximum singular value

 

 

r−0.005
r−0.01
r−0.03
Nominal

Figure 6: Zoom in: Frequency response of (I +GK)−1.

This observation is probably due to the fact that we
allow the uncertain parameter be time-varying. Further,
if using constant multiplier matrices Π in the controller
synthesis algorithm, we are actually guaranteeing ro-
bust performance against arbitrary parameter variations.
This source of conservatism could possibly be circum-
vented by considering frequency dependent scalings for
the multiplier matrices, which will be investigated in an
upcoming paper.

0.5 1 1.5 2
−0.04

−0.03

−0.02

−0.01

0
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0.02
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0.04
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x r1
[m

m
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Response for frequency varying sinusoid

 

 
Nominal
Robust:δ−0.005
Robust:δ−0.01

w0(1+0.005) w0(1+0.01)     w0

Figure 7: Time domain response

Figure 7 shows the closed loop response for nominal
and robust designs (displacements at location r1), sub-
ject to a time-varying sinusoidal disturbance. The sinu-
soidal signal is generated by the undamped system (24),

with imbalance parameters ε = 0.01 mm, τ = 0.01
rad. Clearly, the robust designs result in better attenu-
ation levels if the frequency varies with time.
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r−0.01
r−0.03
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Figure 8: Robust stability against plant model uncer-
tainty

Robustness against plant uncertainties
So far, the AMB plant was assumed to be known accu-
rately and uncertainty only affected the disturbance fre-
quency. In practice, however, AMB systems are sub-
ject to various other uncertainties, for example due to
inductance, bias currents, nominal position etc. It is
usual practice to model these uncertainties as a lumped
full block ∆ and consider the control design problem
for robustly stabilizing a set of plants given by G :=
{(I + ∆T WT )G0 : ‖∆T ‖∞ ≤ 1}. A loop shaping de-
sign procedure to obtain robustly stabilizing controllers
for a rotational speed variation of 0-10000 rpm, along
with other model uncertainties can be found in [4]. Sim-
ilar to what was done in [4, 5], all designs have been
analyzed for robustness against uncertainties in the plant
model. This is done according to the text-book procedure
using a small gain argument on the transfer function seen
by the uncertainty block, which is denoted by T . Figure
8 shows the resulting magnitude plots, using the weight-
ing function WT in [4]. The robustness margin decreases
from a value of 0.57 to 0.20 from the nominal to robust
designs. When considering uncertainty in the rotational
speed (0-10000rpm) only, the gain of T is less than 1,
confirming robust stability, as shown in Figure 9.

It is our perception that the robustness margins can
be improved by incorporating plant model uncertainty
into the design process. The robust synthesis procedure
as used in this paper can be combined with standard µ-
synthesis techniques leading to DK-like iterations.
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Figure 9: Robust stability against rotational speed uncer-
tainty in plant
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