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ABSTRACT
This study evaluates the design tradeoffs of linear-
quadratic (LQ) and LQ / loop transfer recovery (LTR)
controllers for MIMO AMB system. The comparison of
the LQ regulator with the Kalman filter, LQ/LTR
design, and classical PID and PI/PD cascaded
controllers is presented.

The properties of the tested control configurations
are examined using maximum singular values of the
output sensitivity function of the close-loop system and
the tolerated disturbance force at the input of the plant.
Furthermore, the indexes such as measured peak output
sensitivity, responses to the step reference position and
step disturbance are examined. The simulation and
experimental results from the test-rig are compared.

INTRODUCTION
In the control of AMBs the most widely used control
methods utilize relatively straightforward controllers,
for example, lead compensator with low-pass filter and
cascaded PI/PD structure. However, the performance of
these decentralized (local) controllers, which consider
the rotor as two masses located at bearings, is limited
by the simple control structures. The more sophisticated
controllers, like model-based centralized (global)
controllers may account for flexible modes of the rotor,
known disturbances, and rotational speed dependent
dynamics of the system. Therefore, they could provide
better performance, but their drawbacks are the timely
control design, complex implementation, and greater
computational effort.

In recent years, new approaches in centralized as
well as decentralized control of AMBs have been
presented in the literature. A decentralized PI/PD
position control of AMBs was examined in [1].
A multi-objective genetic algorithm was proposed as an

optimization tool for designing decentralized AMB
controllers in [2]. Schroder et al. [3] applied this
approach in an on-line tuning of the AMB controller. In
[2] and [3], the decentralized controller structure was
based on the PI, lead compensator, and notch filter. A
linear-quadratic (LQ) control with a switching controller
(copper losses were optimal) was presented by
Zhuravlyov in [4]. The LQ control based on the flexible
rotor model obtained using finite element modeling
(FEM) was studied in [5].

Finding an optimal AMB control structure and
control design method, suitable for selected application,
is not a trivial task. A credible comparison between
various control strategies is difficult because of different
tuning approaches. The manual selection of tuning
parameters for different control methods yields, in fact,
trial and error tuning.

This paper demonstrates a practical approach to the
off-line tuning of the AMB model-based controllers.
The work demonstrates a convenient method to
automate the optimal tuning of the selected controller
structures using the same objective function. This way,
a credible comparison between the controllers of
different structures is achieved. The proposed control
design tuning method utilizes a genetic algorithm that
efficiently contributes to the overall performance
improvement over the best manually tuned reference
designs.

The  trade  offs  in  the  design  of  MIMO  AMB
control, with respect to the tolerated disturbance forces,
and effectiveness of the feedback are highlighted. The
obtained controllers are evaluated by simulations and
experiments using the AMB test-rig. The work focuses
on the radial suspension.

In the utilized test-rig a rotor alone weighted 46.2
kg. Two radial and one axial bearing were keeping the
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rotor in suspension. In current controlled actuators we
applied reduced premagnetization current equal to 0.25
times the maximum coil current. All the tested
controllers were implemented using FPGA-PC-
dSPACE™ prototyping control platform for rapid AMB
control software development [5].

CONTROL DESIGNS
The classical decoupled PID control or its
modifications, for example, cascaded PI/PD control are
simple and in many applications sufficient control
methods. Because of their popularity such a direct
output feedback controllers are used here as references
for comparison with more complex state-feedback,
model-based controllers.

PID based control
For the decentralized control we apply the approach
presented in [1] resulting in a PID like controller, with
an additional first-order filter (or a lead compensator
with an integrator). We use the controller with the
transfer function
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where GP,ld, ld, ld, aI, and I are the lead compensator
gain, the time constant, the frequency of the maximum
phase lift, the integral term gain scale coefficient, and
the integral time constant, respectively.

Following [1], we modify this controller into the
cascaded PI/PD structure with the transfer function (1)
for aI = 0 in the inner control loop. In the outer control
loop  we  apply  the  PI  controller  term  with  the  transfer
function
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where aP and GP,pi are  the  proportional  term  gain
coefficient and the overall PI controller gain,
respectively.

The reference controllers for PID and PI/PD are
hand tuned according to rules suggested in [1].

LQ and LQ/LTR control
For LQ control the accuracy of the plant model is
crucial. The control designs of the LQ regulator (LQR)
with the Kalman filter and the LQ / loop transfer
recovery (LTR) controllers are based on a detailed
coupled, MIMO plant model obtained using FEM. The
actuator dynamics are approximated with the first order
model and included for each input channel in the
overall plant model. The first three critical speeds of the

rotor are 260, 539, and 952 Hz. The radial suspension
with four inputs, four outputs, and active control of the
first flexible eigenmode is considered.

The LQR and state estimator with additional
constant disturbance observer are built as presented in
[5]. The estimator is formed as
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where A, B, u, y, x , y , w , and L are the state matrix,
the input matrix, the input vector, the output vector, the
estimate of the state vector, the estimate of the output
vector, the estimate of the disturbance signal, and the
estimator gain matrix that provides satisfactory
dynamics of estimation error, respectively. In the
implementation Aw=0.  However,  in  the  design,  we
introduce the first order dynamics into the disturbance
model to obtain a required integration time constant.
The state matrix of disturbance model Aw is diagonal
with the elements roughly equal to the selected inverted
integrator time constant. The output matrix of
disturbance model Cw is  unitary.  The  estimator  gain
matrix is obtained from the steady-state solution of the
Riccati equation. The computation is based on the
output (sensors) noise intensity matrix Rv and the
process input noise intensity matrix Rw. The state-
feedback is formed by applying the feedback gain
matrix K as

wxu −−= K . (5)
The state-feedback controller gain matrix K minimizes
the quadratic integral performance index Jq, that is
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where Q, R, x, and t are the state weighting matrix, the
control weight matrix, the state vector, and time. The
noise covariance matrices Rv and Rw are assumed to be
diagonal and are used as design parameters. For
determining the diagonal weighting matrices Q and R,
in the reference design, where Q =Q1, we utilize the
Bryson’s rules [6]. The diagonal elements of Q1 are
equal to the inverse of the square of the maximum
allowed values of the corresponding states. The
diagonal elements of R are  equal  to  the  inverse  of  the
squares of the maximum allowed values of the
corresponding control inputs. Therefore, the reference
controller  for  the  LQ and LQ/LTR controllers  is  based
on the diagonal weighting matrices, which are unity
matrices when in per-unit quantities. According to [6],
in the control layout, the state command reference input
structure is utilized. The suitable reference matrices are
computed from the zero steady-state error requirement
of the system.

For the LQR with the Kalman filter it is difficult to
achieve satisfactory robustness properties at the inputs
and outputs of the plant [7]. However, for the minimum-
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phase plants, the LTR procedures, which originate from
[8], alleviate the controller design. Unfortunately, the
LTR method, which utilizes high recovery gain,
decreases the tolerable disturbance signals at high
frequencies and causes problems with unmodeled
dynamics. Therefore, the compromise between
performance and robustness at different frequencies
limits the control design. Bearing this in mind, the filter
loop recovery controller is computed, by designing the
controller gain matrix K that minimizes Jq in (6) with

,T
1 CCQQ ρ+= (7)

where  and C are the recovery gain and the output
matrix in the state-space representation. Figure 1
presents the singular value plots of the output sensitivity
function for the different recovery gains, when carrying
out the design in physical quantities. The gain  = 1e7 is
selected because the sensitivity to unmodeled dynamics
and the oscillations in time responses are anticipated.

In the design procedure of the tested and compared
controllers, a genetic algorithm (GA) is used for the
selection of proper control parameters. This GA
provides unbiased by human error and optimized tuning
of the parameters of the reference designs. The
equivalent program, with the same objective function,
population size, number of iterations, and genetic
operations, is utilized for all investigated controllers.

Design objectives and performance indices
In the design and later in the comparison we utilize two
major indices. The first is an output sensitivity function
as suggested in [9] and the second is a minimum
tolerated disturbance force over the frequency. When
considering the MIMO systems, it is not possible to
determine unequivocal Bode plots of the sensitivity and
tolerated disturbance force. Therefore, the magnitudes
of the singular values are used instead. The minimum
singular value )(Gσ  and the maximum singular value

)(Gσ  of matrix G are equal to the largest and the
smallest gain for any input direction, respectively.

The output sensitivity function (i.e. a ratio of the
error signal to the reference) contributes to the
attenuation of the disturbance signal introduced at the
position sensors. Its maximum value is used as an index
representing the relative stability of a system (see e.g.
[9]). The output sensitivity function is

( ) ,1
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where Gpl and Gc are the transfer function matrix of a
plant and controller (feedback path), respectively. In
particular, we use the peak of the maximum singular
value of the frequency response for sensitivity

)(max oS Sσ=
ω

M (9)

that, in general, should be small for robustness.
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FIGURE 1: Output sensitivity (LTR controller)

The minimum tolerated disturbance force, for given
frequency, is the minimum of the singular-value plots of
the inverted input complementary sensitivity (i.e. an
inverted ratio of the control effort to the input
disturbance) and the singular value plots of the inverted
input disturbance attenuation (i.e. an inverted ratio of
the measured position to the input disturbance) of the
MIMO radial suspension at that frequency. The input
complementary sensitivity is

( ) .1
plcplci

−+= GGGGT I (10)

The input disturbance attenuation is
( ) .' 1

plcpli
−+= GGGT I (11)

In the design, we evaluate the minimum tolerated
disturbance force, at the frequency , such as

)))('/1()),(/1(min()( iiT ωσωσ=ω TTM (12)
that,  in  general,  should  be  large  for  disturbance
rejection. Additionally, we study the peak of the
minimum tolerated disturbance force MT for all
frequencies.

The singular-value plots are considered for the per-
unit system. The base value of the displacement of the
rotor from the central position is 300 m; and the base
value of the magnetic force is 2010 N.

Genetic algorithm for parameter optimization
Meng and Song [10] have demonstrated that the use of a
fast genetic algorithm can improve the performance of
the  PID  control.  In  this  paper  we  generalize  this
approach to the PI/PD, LQR with the Kalman filter, and
LQ/LTR controllers.

We  start  with  defining  the  chromosomes.  The
design parameters for LQ control are the diagonal
elements in the matrices Q, R, Rv, and Rw.  For  the  LQ
control, we select the six elements to be included into
the chromosome. For the PID and PI/PD based control,
we select the six and seven parameters to be included
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into the chromosome, respectively. For the
decentralized controllers, the gains GP,ld and GP,pi are
considered separately for each radial bearing.

Next, we create the initial population of individual
designs, which are based on the hand tuned reference
controllers. We select the constant population equal to
60 individuals.

After that, the objective function (fitness function)
that maps the chromosomes into fitness values is
defined. These values measure the quality of the
individual design in terms of the optimal solution. The
objective function minimizes the sensitivity peak and
maximizes the tolerated disturbance forces. Two cases
are considered. The controllers are tuned in such a way
that the closed-loop systems result in the same
minimum tolerated disturbance forces at 180Hz and
10Hz for the case 1 and 2, respectively. The objective
function is
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where MS,ref and MT,ref are the peak sensitivity of the
reference design and the minimum tolerated disturbance
force of the reference design, respectively. The indices
MT ), MT,ref ), MT 1), and MT 2) are evaluated at
specific frequencies  = 180·2  (for the case 1),  =
10·2  (for the case 2), 1 = 260·2 , and 2 = 539·2 .
The optimization is performed on the linearized plant
model.

In each iteration, the new population is created in
such a way that the opportunity of reproduction of each
individual (selection of the individual for mating)
increases with the increase of the individual fitness
value.  The  mating  is  carried  out  by  the  means  of
mutation, crossover, and average in the corresponding
entries of parents’ chromosomes.

With this algorithm, two problems were observed.
First, the procedure was sensitive to local minima. This
was counteracted by frequent and strong mutations.
Second, the single performance index could overwhelm
the individual fitness value. Therefore, the individual
designs are constrained so that all their performance
indices have to be better than the indices of
corresponding reference designs.

The convergence of the GA for the case 1 and 2 is
shown in Fig. 2 and 3, respectively.

COMPARISON OF CONTROL DESIGNS
For comparison, the obtained maximum and minimum
singular values of the output sensitivity and the
tolerated disturbances of the closed-loop control system
for the different controllers (A: PID, B: PI/PD, C: LQ,

and D: LQ/LTR) and different design cases (reference,
case 1, case 2) are presented in Figs. 4-8. The
controllers C and D have the same reference design
described earlier. The frequencies were the closed-loop
systems are required to have the similar performance are
shown as black solid lines for the case 1 and 2 in Figs.
5-8. Additionally, the peak output sensitivity (a:
sensitivity in pu), tolerated disturbance (b: at the worst
case frequency), responses to the 0.33 pu step change of
the rotor position reference (c: overshoot, d: peak
current) and the 0.1 pu step control current disturbance
(e: displacement, f: peak current) are shown in Table 1.
The peak output sensitivity is computed analytically
(a1), obtained from the simulation (a2), and measured
(a3).  The  values  listed  in  Table  1,  in  columns  b-f  are
obtained from the simulation. The simulated and
measured system responses to the step change of the
rotor position reference and the step change of the
control current disturbance, for the controllers A-D in
the case 1 and in the case 2, are presented in Figs. 9-16.

In order to approximate the sensitivity peaks, a
sinusoidal position reference signal of the magnitude
0.01 pu and frequency sweep from 30 Hz to 600 Hz
over a period of 9 s was applied, to one radial actuator at
a time. The maximum peak obtained from the
measurements, which are carried out for two radial
bearings, is stored in the table. In the same manner the
sensitivity peaks are determined from the experiment
and from the simulations. For simulations, the method
results in smaller peak values than the peak singular
values obtained analytically or the peak values obtained
by experiment. The analytical peak singular values
correspond to the worst input directions.

TABLE 1: Comparison of the controllers
Ref a1 (a2) a3:

[pu]
b:
pu

c:
%

d:
pu

e:
pu

f:
pu

A: 6.8 (3.8) -- 0.15 91 0.71 0.40 0.27
B: 8.3 (4.4) -- 0.13 0 0.12 0.30 0.26
C: 2.7 (2.1) -- 0.37 2 0.27 0.50 0.28
case
1
A: 5.3 (3.4) 3.6 0.18 83 0.95 0.37 0.26
B: 8.3 (4.4) 5.5 0.13 0 0.12 0.30 0.26
C: 1.9 (1.8) 2.1 0.39 2 0.12 0.69 0.28
D: 2.0 (1.8) 2.2 0.41 3 0.12 0.64 0.28
case
2
A: 3.6 (2.2) 2.9 0.26 61 1.00 0.28 0.24
B: 8.3 (4.4) 5.5 0.13 0 0.12 0.30 0.26
C: 2.3 (2.2) 3.9 0.50 1 0.30 0.25 0.26
D: 2.3 (2.0) 2.6 0.48 1 0.21 0.32 0.25
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FIGURE 2: Convergence of GA (case 1)
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FIGURE 3: Convergence of GA (case 2)
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FIGURE 4: Output sensitivity (reference controllers)
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FIGURE 5: Output sensitivity (design case 1)
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FIGURE 6: Output sensitivity (design case 2)
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FIGURE 7: Tolerated disturbance (design case 1)
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FIGURE 8: Tolerated disturbance (design case 2)

The signal sweep method results in approximated peak
magnitude values because of transient system
responses. However, the correspondence between the
peak maximum sensitivity values, which are obtained
analytically, experimentally, and by simulation, is
satisfactory.

The simulation model of the AMB rotor system,
which was utilized in the comparison, comprised the
nonlinear actuator (as presented in [5]) and the FEM
based rotor model. The modeled nonlinearities included
the voltage saturation, the current saturation, the
dynamic inductance and the force-field relation
obtained with the reluctance network method (RNM)
presented in [11]. The solution region of the RNM, was
two-dimensional and it took into account the magnetic
saturation, the pole cross coupling and the leakage flux
over the stator slots.

Looking at the sensitivity and disturbance plots, it
is apparent that the model-based optimal control
methods perform significantly better at the critical
speeds; also the peak sensitivity is smaller and the
maximum tolerated disturbance is greater than for the
decentralized controllers.

In  the  case  1,  for  the  controllers  A  and  B  the
feedback effectiveness at lower frequencies is better
than  for  the  controllers  C  and  D,  that  is,  the  singular
values of the PID based control sensitivity plots are
lower.  This  results  from  the  higher  feedback  gains  at
frequencies before the crossover; and it affects the
disturbance step responses of the controllers.

In the case 2, the controllers A and B do not differ
significantly when compared to the case 1. In fact, the
controller B has the same performance indices for all
the design cases. The limiting factors are the poor
attenuation of the disturbances at the critical speeds.
The controllers C and D have noticeably the higher
open-loop  gains  than  in  the  case  1,  but  they  have

slightly higher maximum sensitivity peaks and the
decreased performance at higher frequencies.

The described strengths and weaknesses of the
controllers C and D in both design cases result from the
presence of the Kalman filter.

The key point in the design is the proper
formulation of the objective function and the
computation of the individual fitting values. In both
design cases, the controllers A and B, which are tuned
with the help of the GA, are similar. The first difference
between the two designs is the superior response to the
step  reference  position  of  B  due  to  the  de  facto  two
degrees of freedom controller. The second difference is
the greater sensitivity of B to the high frequency flexible
modes. Even greater resemblance appears between the
controllers C and D in the design case 1. In the case 2,
the singular value plots for C and D are slightly
different. However, the performance indices are similar.
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FIGURE 9: Responses to the step reference position
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FIGURE 10: Responses to the step disturbance
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FIGURE 12: Responses to the step disturbance
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FIGURE 13: Responses to the step reference position
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FIGURE 14: Responses to the step disturbance
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FIGURE 15: Responses to the step reference position
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CONCLUSIONS
The paper applies the genetic algorithm to evaluate the
design tradeoffs of LQ, LQ/LTR, PID, and PI/PD
controllers in the MIMO AMB system. The practical
and credible comparison of controllers by using
frequency response methods is presented.

In  conclusion,  the  use  of  PI/PD and LTR ease  the
hand tuning of the controllers. However, when the GA
and the objective tuning are utilized, the similar results
can be also achieved by the classical PID and LQ
control methods. The LTR provides another degree of
freedom in the LQ control design; it helps in achieving
a good compromise between performances at high and
low frequencies, with the selection of the one parameter
only, that is, the recovery gain.

For all the studied cases, the model based
controllers performed better when compared to the PID
based solutions. Nevertheless, the computational burden
of these controllers was considerable. The digital
model-based controllers were implemented as a state-
space form with twenty states. As a comparison, the
decentralized lead compensator required only eight
states. The sampling time was 100 s.

The genetic algorithm improved the performance
and stability indices of the each tested control design
when compared to the reference ones.

The controllers with the simple decentralized
structure occurred to be less liable to tuning with
respect to the trade offs at higher and lower frequencies,
than  the  model  based  controllers.  For  PID  and  PI/PD
controllers, the design trade-offs are not possible
without decreasing the stability indices because of the
flexible modes.

The future outlook could focus on the following
aspects:
• developing the genetic algorithm, for example,

using more complex multiobjective fitness
function, variable population size, and variable
controller order and structure, selection of
individuals to retain solutions of local minima and
diversity of population

• including more control methods in the comparison
• utilizing the identified plant model instead of the

FEM based model
• introducing uncertainties to the plant model
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