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ABSTRACT 
This paper describes numerical analysis of interaction 
between rotor and auxiliary bearing due to high 
transient overloads. When the fast spinning rotor 
interacts with the auxiliary bearing that does not move, 
some critical states of motion are possible. One of these 
motions, backward whirl, reaches very high frequencies 
and thus can produce very high loads on rotor and 
bearings, which can lead to the destruction of the 
machine. 

The detailed model of the AMB supported rotor 
auxiliary bearing system considers discontinuous 
stiffness caused by bearing clearance effects, auxiliary 
bearing fixed or flexible mount types, nonlinear 
Hertzian contact stiffness and Coulomb friction forces.  
Numerical investigations as time history, orbit diagram, 
bifurcation diagram, Poincaré section diagram are 
proposed to study the system parameters which 
extremely influence the whole dynamic response. One 
of the important parameters, rotor driving frequency, 
can be modelled as time variable parameter in the 
detailed system model. Moreover, parameters used in 
the detailed model discussed in this paper obtained from 
experimental test rig. 

INTRODUCTION 
Auxiliary bearings play an indispensable role in active 
magnetic bearings (AMBs) supported rotor systems.  
They support high speed spinning rotor in the case of 
AMBs fail to work, or transient load conditions [1].  
When the high speed spinning rotor interacts with the 
stationary auxiliary bearings, a fatal critical state of 
motion, backward whirl is possible.  During backward 
whirl, rotor reaches very high frequencies and thus can 
produce very high loads on rotor and bearings, which 
can lead to the destruction of the machine [2].  So, it is 
important to study detailed model of the interaction 

between rotor and auxiliary bearing in order to explore 
which factors are essential to this kind destructive 
failure and find an appropriate design to prevent it. 

In recent years many studies have been carried out 
about the nonlinear model of interaction between rotor 
and auxiliary bearings.  The work of F. F. Ehrich in 
publication [3] has clearly demonstrated nonlinear 
model due to bearing clearance.   Full annular rubbing 
interaction between rotor and seal, including 
synchronous or reverse (backward) precessions, has 
been analytical discussed by D. E. Bently, J.J. Yu in 
publication [4].   Kirk gave a very detail review of the 
analysis method of transient rotor drop down to 
auxiliary bearing for AMBs rotor system [5].  M. Orth 
developed a modelling tool called ANEAS to simulate 
AMBs rotor system and study the effect of the initial 
start point of rotor and behaviour of rotor after drop 
down [1,6]. P. S. Keogh, M. O. T. Cole developed 
experimental procedures to study the contact dynamic 
response with consideration of misalignment [7].  
Chaotic and regular vibration of the rotor due to bearing 
clearance has been extensively investigated in 
publication [8] by Karpenko. 

In this paper, the detailed model of the AMBs 
supported rotor auxiliary bearing system considers 
discontinuous stiffness caused by bearing clearance 
effects, nonlinear Hertzian contact and Coulomb 
friction forces; rotor driving frequency can be a time 
varying parameter; The auxiliary bearings could be 
fixed and compliant mounted in machine housing. 
Numerical investigations as time history, orbit diagram, 
bifurcation diagram, Poincaré section diagram are 
proposed to study the system parameters which 
extremely influence the whole dynamic response. A 
numerical investigation of AMBs supported rotor 
interaction with auxiliary bearing system is 
implemented in commercial software MATLAB. 
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TEST RIG 
The test rig consists of a rotor, which is radically 
suspended with two AMBs. Two pairs of inductive 
sensors are mounted to the test rig to measure the radial 
displacement of the rotor, which have to be known for 
controlling the AMBs.   Two single row deep groove 
ball bearings made by SKF (SKF 6004) are assembled 
to the test rig as auxiliary bearing.  The air gap between 
the rotor and the bearing is 0.3 mm. A motor provide 
the drive power to rotor. The maximal driving 
frequency reaches 500 Hz (30000 rpm). The first 
bending eigenfrequency for the free-free rotor is 
approximately 1600 Hz; the first bending 
eigenfrequency for the fixed-fixed rotor is 
approximately 696 Hz. Further information about test 
rig is introduced in [9]. Table 1 lists the most important 
parameters of the test rig, which has been also used in 
the numerical investigation in this paper. 

TABLE 1: Parameters of the test rig 

Rotor  

Mass of the rotor 3.36   kg

Polar moment of inertia  0.001 kgm2

Transverse moment of inertia  0.017 kgm2

Unbalance eccentricity 0.0292 mm

Clearance  0.3 mm

AMB  

Radial static stiffness  2.4670e+6 N/m

Radial static damping coefficient 100 Ns/m

Auxiliary bearing   

Mass of  the auxiliary bearing 0.069 kg

Coefficient of Coulomb friction  0.015 

Local stiffness of Hertzian contact 2.4e+9N/m3/2

Damping coefficient of Hertzian 5  

SYSTEM MODEL  
In this paper, we introduce a rigid rotor to analyze the 
rotor dynamic and the influence of the system 
parameters. The unbalance of the rotor provides the 
harmonic excitation with varying driving frequency.  
Rotor could be considered as a rigid rotor and neglected 
the gyroscopic effect. The static stiffness of active 
magnetic bearing is depended on controller parameters 
the rotor position and the coil currents. Under some 
special conditions such as active magnetic bearing 
failure or high transient overloads etc., rotor interacts 
with auxiliary bearing, and then additional contact force 
and friction force are generated between rotor and 
auxiliary bearing. 

A mathematical model of the AMB supported 
Rotor-Auxiliary bearing system is shown in Fig. 1. The 
absolute coordinate system is OXY ; the displacement 
of the centre rotor Or  in horizontal direction and 
vertical direction are denoted as x and y ; the centre of 
the auxiliary bearing Ob  is at position [ xb , yb ], 
which are not equal to zero when the auxiliary bearing 
is misalignment with absolute coordinate system.  The 
clearance between rotor and auxiliary bearing is Cs . 
AMBs provide spring force and damping force, whose 
stiffness and damping are respectively 1k and 1d . 2k  
and 2d  are supporting stiffness and damping of the 
auxiliary bearing respectively which are provide by 
machine housing or support component.  ck~ and 

cd~ are respectively contact stiffness and damping 
which could be liner contact stiffness or nonlinear 
Hertzian contact stiffness. 

When the auxiliary bearings are mounted directly 
with the machine housing, it could be assumed as fixed 
mounted auxiliary bearings; so the supporting stiffness 
is much higher than the contact stiffness, therefore, the 
supporting stiffness and damping could be ignored. 
Otherwise, when the auxiliary bearings are compliantly 
mounted on the machine housing, the supporting 
stiffness and damping must be taken into account in the 
system mathematical model. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 1: Model of the system 

The second order equations of motion for this type 
rotor model can be described in two states due to 
clearance between rotor and auxiliary bearing, one is 
without interaction (State 1) between rotor and auxiliary 
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bearings, and the other (State 2) is with the interaction 
between rotor and auxiliary bearings. 

Equations of motion of AMBs supported rotor with 
fixed mounted auxiliary bearing  

State 1: 
)cos()(1)(1)( tFtxktxdtxm Ω=++ &&&  
)sin()(1)(1)( tFtyktydtym Ω=++ &&&  

State 2: 
xx fNtFtxktxdtxm ++Ω=++ )cos()(1)(1)( &&&

yy fNtFtyktydtym ++Ω=++ )sin()(1)(1)( &&&  

Equations of motion of AMBs supported rotor with 
compliant mounted auxiliary bearing  

State 1: 
)cos()(1)(1)( tFtxktxdtxm Ω=++ &&&  
)sin()(1)(1)( tFtyktydtym Ω=++ &&&  

0)(2)(2)( =++ txktxdtxmb &&&  
0)(2)(2)( =++ tyktydtymb &&&  

State 2: 
xx fNtFtxktxdtxm ++Ω=++ )cos()(1)(1)( &&&  
yy fNtFtyktydtym ++Ω=++ )sin()(1)(1)( &&&  

xxb fNtxktxdtxm −−=++ )(2)(2)( &&&  
yyb fNtyktydtym −−=++ )(2)(2)( &&&  

where, m is mass of the rotor. mb is mass of the 
auxiliary bearing. Ω  is rotor driving frequency. In 
many studies, the rotor driving frequency Ω  is 
assumed as a constant value, but in actual condition, it 
can not be simplified as a constant, it is a variable 
depend on many factors. In [10], authors introduced 
experimental formulas for the deceleration of the 
driving speed due to the aerodynamic torque in the case 
of power failure. In this paper, the rotor driving 
frequency could be modeled as a time variable 
parameter. me is unbalance of the rotor. Unbalance 
force can be modeled as meF 2Ω= ; xN , yN  are 
normal contact force components in horizontal and 
vertical directions respectively; xf , yf  are tangential 
friction force components in horizontal and vertical 
directions respectively.  

For a simplified model, the contact force N between 
rotor and auxiliary bearing can be considered as ideal 
elastic force, which is linear with the non-negative 
radial penetration  

            Csysyxsx −−+−= 22 )()(δ ,  

with contact stiffness ck~ , so contact force is as follows: 

                           δ⋅= ckN ~
 

Friction force f  between two contact surfaces is 
followed Coulomb law Nf µ= , hereµ is the friction 
coefficient between rotor and auxiliary bearing.  

It is worth to mention that when contact is between two 
perfectly flat surfaces, the area of contact zone does not 
change during the time of impact, so the ideal linear 
elastic contact law probably applies. The contact type 
between rotor and auxiliary bearing is cylinders in 
longitudinal contact. In order to get more actual 
physical contact model, we also studied Hertzian 
nonlinear contact in the detailed AMB-rotor-auxiliary 
bearing model.  In [11], the authors introduced the 
Hertzian nonlinear contact model.  

During rotor contacts with auxiliary bearing, the 
normal contact force between rotor and auxiliary 
bearing can be written as  

),(~),(~
2
3 2/32/3 δδδδδδαδ &&& cdckkkN +=+= . 

Here δ is radial penetration, δ&  is penetration δ  
derivative with respect of time, k is local stiffness 
parameter, α  is damping parameter.  With the result of 
experiment measured contact force, detail estimation 
method of the contact force by using Hertzian nonlinear 
contact theory is introduced in order to get parameters 
k local stiffness and α damping coefficient in [9]. The 
author also assumed that the contact could be two 
sphere contacts for practical purpose, exponent ofδ is 
to equal to 3/2, which is dependent on the type of the 
contact. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 2: Hertzian nonlinear contact 

Figure 2 shows simulation results of an example of 
Hertzian nonlinear contact, local stiffness parameter 
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k is about 9104.2 × N/m3/2 and damping parameter α  
may be determined for small impact velocities from the 
linearized relation between coefficient of restitution and 
impact velocity [11].  Fig. 2 (top) shows the hysteretic 
relation between normal contact force N  and 
penetration δ . The nonlinear contact stiffness varies 
from 51086.2 × N/m to 71016.1 × N/m during the 
contact under some special initial conditions. From 
Fig.2(bottom), the nonlinear contact force is continually 
changing with time, which is different with linear 
contact.   

SIMULATION RESULTS ANALYSIS 
The detailed model of the AMB supported Rotor-
Auxiliary bearing system has considered important 
system parameters such as unbalance of rotor, driving 
frequency which could be time variable and invariable, 
supporting stiffness and damping of  auxiliary bearing, 
stiffness and damping of contact, clearance, 
misalignment between rotor and auxiliary bearing etc.  
Since the driving frequency is one of the most 
convenient parameters to be controlled in the build up 
test rig, it has been chosen as a parameter of study in 
this work. Some important parameters of the detailed 
model are obtained from test rig which is introduced in 
section 1 and listed in Table 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 3: Bifurcation diagram  
 

The above derived equations of motion were first 
mathematically transferred into a set of first-order 
differential equations [12]. The well-known Runge-
Kutta method is used to solve these equations. Plenty 
cycles were allowed before data was analysed, to ensure 
that a steady state solution had been achieved.  
Moreover, for numerical solution, the initial conditions 
are very important for successive and economic 
computational solution. Particularly for nonlinear 
systems, different initial conditions mean totally 

different solutions. The control parameter was increased 
in small steps, each step starting with same initial 
conditions  

The equations of motion derived in above section 
are nondimensionalized in order to compare and discuss 
numerical simulation results with different control 
parameters conveniently. The time is 
nondimensionalized by using natural frequency of the 
rotor system; the displacements, such as horizontal and 
vertical displacements of rotor centre, are 
nondimensionalized by employing the clearance 
between rotor and auxiliary bearing. 

 A bifurcation diagram is a very effective method to 
reflect the motion change by control parameter change. 
In order to compute a bifurcation diagram, a control 
parameter dimensionless driving frequency is varied 
from 0.55 to 1.5 at a constant step size 0.0073. As Fig.3 
shows, the numerical simulation results obtained from 
the study system model represent complex behaviours 
with different dimensionless driving frequencies. In the 
low dimensionless driving frequency range from 0.55 to 
0.91, period one motion is observed. At around 0.92 it 
flips to period three motion, then after a slender range 
period one motion, it shows a possible band of chaotic 
motion between 0.94 and 0.96. Period two motion is 
observed in the region [0.97 1.17]. With increase of the 
control parameter, the motion of the system model 
becomes more complicated. From 1.17 to 1.33, chaotic 
motion was predominant, but period two motion, period 
four motion are observed at some specific values of the 
control parameter as well. If the dimensionless driving 
frequency is beyond 1.34, the bifurcation diagram 
shows a transition from chaotic motion into period one 
motion obviously.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 4: Poincaré section diagram, rotor orbit, rotor 
time history in dimensionless coordinates at 
dimensionless driving frequency 0.55 (piecewise linear 
contact model) 
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The simulation results of the system mathematical 
model show the period one, period two, period four and 
chaotic motion, etc. Figures 4 - 7 show the Poincaré 
section diagrams, the rotor orbits, the rotor time 
histories in dimensionless coordinate at different driving 
frequency of 0.55, and 1.28 respectively. When the 
dimensionless driving frequency is at 0.55, the motion 
is regular and periodic one as shown the orbit map in 
Fig.4(right) and time history in Fig.4(down). And there 
are many points clustered into one point in the Poincaré 
section diagram in Fig.4(left). The system response is 
presented a period one motion.  Contact force of the 
system is modelled as pricewise ideal elastic linear 
contact when rotor interacts with fixed mounted 
auxiliary bearing.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 5: Poincaré section diagram, rotor orbit, rotor 
time history in dimensionless coordinates at 
dimensionless driving frequency 0.55 (Hertzian 
nonlinear contact model) 

As shown in Fig.5, the dimensionless driving 
frequency is also at about 0.55. But, the simulation 
results show obvious difference with the Fig.4. From 
Poincaré section diagrams Fig.5(left) and the time 
history of the dimensionless rotor displacement 
Fig.5(down), motion of the study model is chaotic.  The 
results shown in Fig.5 are of the revised model whose 
contact force is modelled as nonlinear Hertzian contact. 
Except the contact force model, the other parameters of 
these two models are same.  

Figure 6 and Fig. 7 show simulation results at 1.28 
dimensionless driving frequencies of the piecewise 
linear contact system model and hertzian nonlinear 
contact system model respectively. Fig.6 and Fig.7 both 
show chaotic motion. The rotor orbit and time history is 
obviously chaotic, Poincaré section diagram shows a 
geometrically fractal like structure. Based on Figs 3-7 
one can say that the detailed nonlinear AMB-rotor-
auxiliary bearing system represents the complex 
dynamic characters at different driving frequencies 

obviously. But it is worthy to mention that the other 
parameters of the model and model type are also very 
important parameters, which may be related to the 
stability of rotor motion directly.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 6: Poincaré section diagram, rotor orbit, rotor 
time history in dimensionless coordinates at 
dimensionless driving frequency 1.28 (piecewise linear 
contact model) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 7: Poincaré section diagram, rotor orbit, rotor 
time history in dimensionless coordinates at 
dimensionless driving frequency 1.28 (Hertzian 
nonlinear contact model) 

      Figure 8 presented the simulated dimensionless 
contact force of the piecewise linear contact model and 
nonlinear hertzian contact model respectively.  Fig 8 
(top) is dimensionless piecewise linear contact force 
which was calculated with the dimensionless rotor 
driving frequency at 1.28. From Fig.8 (top) it can be 
seen that rotor dose not continuously contact with 
auxiliary bearing, when there is no interaction between 
rotor and auxiliary bearing, the non negative contact 
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force is equal to zero from dimesionless time 400 to 
500. And the piecewise contact force at this situation is 
quasi period as Fig.8 (top) shown. Fig.8 (bottom) is 
dimensionless hertzian contact force which is simulated 
with dimensionless rotor driving frequency at 0.55. It 
can be clearly seen that the rotor continuously contacts 
with auxiliary bearing from dimensionless time 400 to 
500, and it is quite chaotic. It may be that the hertzian 
contact force is more complicated than the piecewise 
linear contact which is only depend on the contact 
stiffness and the value of penetration; but the hertzian 
nonlinear contact is not only depend on some system 
parameters, local stiffness parameter and damping 
parameter, but also depend on the penetration and its 
derivative with respect to time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 8: Simulated dimensionless contact force  

CONCLUSION 
Through numerical investigations presented in this 
paper, it is found that the rotor-AMB-auxiliary bearing 
system undergoes complicate motion behaviour. The 
detailed model which considers discontinuous stiffness 
caused by bearing clearance effects, nonlinear Hertzian 
contact stiffness Coulomb friction forces and time 

varying driving frequency, fixed and compliant 
mounted auxiliary bearing were developed in this paper.  
Bifurcation diagrams, Poincaré section diagram and 
were used to analyse these complex motions. Further 
researches will focus on the studies of other important 
system parameters and experimental verification on the 
build-up test rig. 
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