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ABSTRACT 
In this paper we deal with a design of integral 
sliding mode controller to reject the disturbance 
force acting on the suspension system in a 
magnetically levitated system which is propelled 
by the linear induction motor. The control scheme 
consists of an integral compensator which is 
designed to achieve zero steady-state error under 
step disturbances, and a sliding mode controller 
which is designed for enhancing robustness under 
plant uncertainties. A proper continuous design 
signal is introduced to overcome the chattering 
problem. The disturbance force produced by the 
linear induction motor is formularized by using a 
curve fitting method. Computer simulations show 
the effectiveness of the designed integral sliding 
mode controller to reject the disturbance force in 
comparison with a simple sliding mode controller 
that does not include the integral compensator. 
 
INTRODUCTION 
One of the ways that maintain non-contact states 
between two materials is to employ a magnetic 
suspension technology [1]. This system is 
commonly known as Magnetically Levitated 
system (Maglev) which has been used in the 
vehicle levitation system and magnetic bearing 
system developed in the University of Virginia, 
U.S.A. in 1937 for the first time. There are 
various applications employing the magnetic 
levitation configuration as a key technology, such 
as the magnetically levitated train system[1][6], 
the high speed turbo compressors[2][4], the 
flywheel energy storage system[3], and the 
artificial heart pump [5].  
The magnetically levitated train system can be 
divided into two parts based on the levitation 
method: one is a repulsive type using super 
conductors. A disadvantage of this type of 
suspension system is needed for operation below 
the critical speed when the suspended object is 

stationary. The other type is using ferromagnetic 
or permanent magnet. This type of 
electromagnetic suspension system (EMS system) 
has one significant advantage in that it provides 
attraction force at zero speed, but such system is 
inherently unstable. In order to overcome the 
inherent instability an active controller plays a 
very important role in the electromagnet 
suspension system to make the stable suspension 
and to maintain the suspended object within the 
nominal air gap.  
Especially in the magnetically levitated train 
system external disturbance force acting on the 
controller may cause the malfunction of the 
suspension system. If a Maglev train is propelled 
by the linear induction motor the suspension 
controller of the Maglev train should have a 
capability to reject the normal force produced 
from the linear induction motor. The reason is 
because the normal force of the linear induction 
motor acts as the disturbance force on the 
suspension controller.  
In this paper we deal with a design procedure for 
the integral sliding mode controller to reject the 
disturbance force acting on the suspension 
controller[4][5]. First we present a simple 
mathematical model for the Maglev train and then 
introduce the integral sliding mode controller. 
Second a mathematical formula for the normal 
force of the linear induction motor is derived by 
the curve fitting of the experimental data. Finally 
we show the effectiveness of the integral sliding 
mode controller to reject the disturbance force by 
the dynamic simulation in comparison with the 
simulation results for the sliding mode controller 
that does not include the integral compensator.  
 
MATHEMATICAL MODEL 
Fig.1 shows a simple schematic diagram for EMS 
system which has the electromagnets as the 
suspension actuators, linear induction motor and 
reaction plate for the vehicle propulsion. As 
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shown in Fig. 1, the passenger vehicle and the 
bogie can be levitated by the electromagnets 
attraction force. Once the bogie is levitated, the 
propulsion system (linear induction motor and 
reaction plate) is activated to move the passenger 
vehicle.  
 

 
Fig. 1.  Schematic diagram for EMS system 

 
Fig. 2 is the simplified equivalent model of the 
suspension system shown in Fig. 1. The 
mathematical model of this system is divided into 
two parts: One is the plant (mechanical) dynamics 
and the other is the actuator dynamics.  
 

 
Fig. 2.  Simplified schematic diagram 

 
The plant dynamics is  
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where m is the total mass of the controlled object, 
g  is the gravitational acceleration, and  is the 
external disturbance force acting on the controlled 
object.  In eq. (1),  is the electromagnets 
attraction force which is proportional to the 
current deviation and inversely proportional to the 
air gap deviation, expressed such as:  
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where  is the flux density of the magnetic core 
material,  is the cross sectional area of the 
pole face of the electromagnet, 

B
A

0μ  is the 
permeability in the air space, and is the number 
of turns. Since eq. (2) has high nonlinearity it is 
necessary that the linear approximation should be 
carried out for the analysis of eq. (2) with respect 
to the nominal point . The Taylor Series 
Expansion is usually employed. From the Taylor 
Series Expansion the eq. (2) becomes  
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The actuator dynamics is  
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(4) 
where v  is the coil voltage, R  is the coil 
resistance, and  is the magnet inductance 
which is the function of the air gap displacement 

such as 
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the inductance with respect to the air gap 
deviation in the second term of Eq. (4), and that 
the third term denotes a voltage which varies with 
changes in the air gap  and its rate of change 
similar to back EMF voltage.  

)(tz

By using equations (1), (3) and (4) the state space 
equations are written in the vector matrix form: 
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(5) 
where  is the normal force of the linear 
induction motor which acts. Eq. (5) can be simply 
expressed as 
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INTEGRAL SLIDING MODE 
CONTROLLER 

 
To enhance the disturbance rejection capabilty, 
we introduce an integrator as a state variable into 
(5). The integrator output  is expressed as the 
difference between the integrated reference 
position 

iz

r  and integrated position  z  written 
as:   
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where r is zero for a nominal design. The block 
diagram of the proposed control system is shown 
in Fig. 3.  
In order to synthesis the integral sliding mode 
controller we write the state variables as,  

 and get the following state 
space matrices. 
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Fig. 3.  Block diagram of an integral sliding mode 

controller for Maglev 
 
Eq. (8) is decomposed as:  
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Let the switching surface be defined as Sx=σ  

where 
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If the system dynamics is an ideal sliding surface 
we have 0== Sxσ . Using this property we can 
determine the equivalent system and associated 
linear control input. 0=σ  yields 
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Substituting (12) into (9) yields the equivalent 
system 
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Defining , we write (13) as  1
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The location of poles of the resulting system are 
obtained by selecting k  and  as the 
switching function becomes 

2S
Sx=σ , 

[ ] [ ] [ 1]2221 kSkSSSS 2S=== . Since 
 is controllable, a placement method is 

employed to select the gain  in (14). The 
sliding mode control inputs are separated into the 
linear and nonlinear components as . 
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The linear input  can be selected by the 
following equations:  

lu
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From eq. (15) and (16) we get the equivalent 
linear control input as :  
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The sliding mode reaching condition given by 

0<σσ & , brings the system dynamics to the 
sliding surface 0=σ . Choose the nonlinear 
control as  where )sgn()( 1 σρ−−= SBunl 0>ρ  
Then, it follows that  
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The control input can then be written as  
 

[ ])sgn()( 1 σρ+−= − SAxSBu     (19)  
 
In practice a discontinuous control component as 

)sgn(σ  is undesirable because it may cause a 
chattering problem. The practical control effort is 
to ensure a neighborhood of 0=σ is reached and 
maintained. A common choice of a practical 
nonlinear control input is  
 

δσ
σ

ρ
+
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where δ  is the boundary layer which is selected 
to reduce the chattering problem and ρ  is a 
design parameter.  
 

 
Fig. 4. Smooth approximation of the sgn function 

 
Fig. 4 shows the relation between the 
discontinuous function and continuous 
function. In this figure we can see that the slope 
of the continuous function depends upon

sgn

δ . Fig. 
5 shows the block diagram of the designed sliding 
mode controller connected to the integral 
compensator.  
 

 
Fig. 5 Block diagram of integral sliding mode 

control implementation 
 

CURVE FITTING FOR THE NORMAL 
FORCE 
In this paper linear induction motor is employed 
as a propulsion system. The simple configuration 
is shown in Fig. 1. The linear induction motor is 
composed of primary coil and reaction plate as 
secondary. The thrust force and the normal force 
are dependant upon the relative displacement of 
the primary and the secondary [6]. The relative 
motion between the rotor and the stator can be 
expressed by introducing slip such as: 
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where s is the slip,  is the slip speed of the 

motor,  is the synchronized rotor speed, 

and  is the mechanical rotor speed. If the end 
effect is ignored the force property of the linear 
induction motor is dependant on the slip 
frequency which is defined as the difference in 
speed between the synchronized rotor speed and 
the mechanical rotor speed as:  

slipn
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msyncslip nnn −=           (23) 

 
(22) and (23) yield 
 

syncm nsn )1( −=           (24) 

 
Eq. (24) shows that if the mechanical speed of the 
rotor is equal to the synchronized rotor speed, 

 and  are satisfied, on the other 

hand if the mechanical rotor speed is zero, 
 and  are satisfied.  

syncm nn = 0=s

0=mn 1=s
Fig. 6 shows the relation between force and slip. 
As shown in the figure as the slip increases the 
mechanical speed goes down. Fig. 7 shows the 
relation between the mechanical speed and the 
force produced by the linear induction motor. 
When the mechanical rotor speed is low (slip is 
close to one) the flux density is increased and the 
normal force acts as the attractive force in the 
linear motor which acts as the external 
disturbance force against the suspension system. 
On the other hand, when rotor speed goes up (slip 
is close to zero) the flux density is decreased and 
the normal force acts as the repulsive force in the 
linear motor which causes decrease of the 
suspension control current. Therefore the normal 
force is dependant upon the mechanical rotor 
speed and it is necessary to reduce the attractive 
force of the linear induction motor acting on the 
suspension system as the external disturbance 
force by the slip frequency control. For the 
simulation of the Fig. 7 we used the force data 
from Ref [6]. Fig. 8 shows the estimated normal 
force by using the curve fitting method. Eq. (25) 
represents the approximated formula which 
expresses the normal force. 
  

32
2

1 pvpvpF mmn ++=        (25) 
 
where  is the normal force, nF p  
( , , ) is 
the coefficient for the approximation, and  is 
the mechanical velocity. 

0109.01 −=p 0127.132 =p 3725.7053 −=p

mv

 
Fig.6 Slip and mechanical speed 

 
Fig. 7 Relation between the mechanical velocity 

and force 

 
Fig. 8 Estimatied force 

 
Eq. (25) and the Fig. 8 show the attractive force is 
maximum when  is close to zero. This 
analysis means that the suspension controller is 
affected by the 500[N] attractive normal force of 
the linear induction motor which acts as the 
external disturbance force at low speed and the 
suspension controller should has the capability to 
suppress the external disturbance force. 

mv

 
SIMULATIONS 
 
Table 1. shows the parameters for the EMS type 
suspension system. The attractive force which 
acts on the suspension system as the external 
disturbance force is produced at low speed range, 
that is from 0[km/h] to 40[km/h]. The integral 
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sliding mode controller should be designed to 
reject the external disturbance force which is 
produced at very low speed.  
 
Table 1. Parameters for suspension system  

 
In this paper we employ a dynamic simulation 
model that the disturbance force acts on the 
integral sliding mode controller dynamically. The 
dynamic simulation model makes it possible that 
the effect of the normal force of the linear 
induction motor on the controller can be observed 
in the overall mechanical rotor speed range. In 
order to show the effectiveness of the integral 
sliding mode controller we make the comparison 
with the simulation results provided by the sliding 
mode controller that does not include integral 
compensator.    
For the integral sliding mode controller we set the 
following controller parameters.  

[ 375.1006.00161.0105 ×=k ] 
50=ρ , 4.0=δ  

Fig. 9 represents the gap deviation when the 
integral sliding mode controller is employed. To 
apply the disturbance force to the suspension 
system eq. (25) is used with the change of the 
mechanical speed  from 0[km/h] to 
160[km/h]. Since eq. (25) provides the normal 
force as a function of the mechanical speed, it is 
possible to observe the effect of the normal force 
on the controller in the overall speed range. As 
shown in Fig. 9 Maglev vehicle is successfully 
suspended from the initial position ( [m]) 
even if the normal force of the linear induction 
motor acts on the suspension system as the 
external disturbance force, and the gap deviation 
is maintained inside the nominal gap. Fig. 10 
shows the rescaled of Fig. 9 to observe the low 
speed range.     

mv

31015 −×

 
Fig. 9 Gap deviation : integral sliding mode 

controller 

 
Fig. 10 Gap deviation (rescaled) : integral sliding 

mode controller 
 
Fig. 11 is the simulation results when the sliding 
mode controller without integral compensator is 
employed. The same equation with the case of Fig. 
9 is used to apply external disturbance force to the 
suspension system for making reasonable 
comparison. As shown in the figure the Maglev 
vehicle is not suspended and the gap deviation 
diverges from the nominal gap due to the external 
disturbance force produced by the linear induction 
motor. This means that integral compensator is 
very robust against the step type disturbance force 
as shown in Fig. 9 and Fig. 10. 

 
Fig. 11 Gap deviation : sliding mode controller 

without integral compensator 
 
 

Parameters Values 
Turns 280[ ] N

Coil resistance 0.16[ ] Ω
Steady current 35[ ] A
Pole face area 6104273 −× [ ] 2m
Nominal gap 31010 −× [ ] m

Coil inductance 0.02[ H ] 
Vehicle mass 500[ ] Kg
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CONCLUSIONS 
 

In this paper we dealt with the external 
disturbance force rejection property of the integral 
sliding mode controller in the magnetically 
levitated train system with the linear induction 
motor for propulsion system. The external 
disturbance force produced from the linear 
induction motor at low speed was applied to the 
suspension system with integral sliding mode 
controller and the suspension system with sliding 
mode controller without integral compensator to 
make the comparison of the simulation results.  
First we showed the fundamental mathematical 
model of the magnetically levitated train, and then 
presented the synthesis of the integral sliding 
mode controller. For the normal force analysis of 
the linear induction motor we employed the curve 
fitting method. Finally the effective method of the 
integral sliding mode controller to suppress the 
external disturbance force was suggested and 
shown by the dynamic simulations.  
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