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ABSTRACT 
In this paper, we propose a bearing redundant coordinates 
and decoupled PD controller for 5-axis active magnetic 
bearing system, which consists of two bearing parts such 
as three-pole hybrid active magnetic bearing to stabilize 
the radial direction and ring-type permanent magnetic 
bearing stabilizing in axial and tilting motion. Based on 
derived system equation with decoupled control scheme, 
we examine controllability and observability as well as 
numerical modal analysis. The experiments are also 
carried out in order to verify the effectiveness of the 
proposed controller in stabilizing the transient and steady 
state response of the rotor. 
 
 
INTRODUCTION 
In recent years, design of low-cost miniaturized active 
magnetic bearings (AMBs) becomes increasingly 
important, as they find potential applications to hard disk 
drive [1], artificial heart blood pump [2,3], etc. There 
have been many attempts for more compact and 
cost-effective design ideas for such AMBs. Idea of 
three-pole permanent magnet biased AMB has been 
proposed not only to provide the compactness of design 
but to reduce the number of power amplifiers as well as 
the power consumption. But, it suffers from the nonlinear, 
coupled and asymmetric behaviors with current and 
stiffness coefficient matrices, which is not desirable for 
controller design. 
To make the AMB as compact as possible, it is needed to 
reduce the number of actuators. In this paper, we employ 
the axially polarized ring type permanent magnet 
bearings to stabilize the axial and tilting motion of the 
vertical rotor. Another important design improvement is 
to intentionally introduce the pole-shoe in order to utilize 
the Hall diodes with high sensitivity. This may reduce the 

cost of sensor part in AMBs. 
Three-pole electro-magnet configuration, compared with 
the conventional four- or eight-pole electro-magnetic 
configuration, inherently introduces a control redundancy 
because three independent electro-magnetic actuators 
control the two degrees-of-freedom motion of the rotor. 
In addition, due to the use of three sub-poles with 
permanent magnets to generate bias flux, the 
force-displacement relation becomes highly nonlinear. In 
this paper, the concept of redundant coordinates is 
adopted so that the identical controller design for three 
coordinates can be conveniently achieved. One of the 
immediate advantages in the use of redundant 
coordinates is to deal with symmetric system matrices for 
the linearized control model with respect to the 
equilibrium position. 
 
 
CONFIGURATION OF PROPOSED AMBS 
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FIGURE 1: Schematic view of the proposed system 
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Figure 1 shows the schematic view of the proposed 
system. It consists of radial hybrid-type three-pole active 
magnetic bearing, which is outer rotor type and axial 
permanent magnet bearing for 5-axis suspension, which 
is profitable to more small-sized AMB system. In 
addition, the proposed system uses the laminated silicon 
iron for both stator and rotor decrease the eddy current 
effect. A pair of axially polarized ring type permanent 
magnets is placed with the same poles facing each other, 
in order to induce the repulsive force for passive stability 
in the axial and angular motion. 
 
 
AXIAL PERMANENT MAGNET BEARING 
To make more small-sized AMBs as well as low power 
consumption, proposed system employs ring type 
permanent magnet bearing. As the result, the motion of 
the proposed AMB needs to be controlled only in the 
radial directions. A pair of axially polarized ring type 
permanent magnets is place on the stator and rotor, facing 
each other with opposite poles. This configuration of 
permanent magnets provides positive stiffness in the 
axial direction, but negative stiffness in the radial motion 
whose magnitude is half of the axial stiffness. However, 
the AMBs can generate the positive radial force large 
enough to compensate for the resulting unstable radial 
motion of the rotor. The permanent magnet bearing is 
designed strong enough to support the weight of the 
vertical rotor. In axial permanent magnet bearing, three 
stiffnesses are dominant such as axial stiffness, xK , radial 
stiffness, , and angular moment stiffness, 

. Here  is the radius of permanent magnets. 
/ 2xK−

2 / 2xR K R

 
FIGURE 2: Simple model of axial PMB 

 
 
RADIAL THREE-POLE MAGNET BEARING 
The proposed radial three-pole magnetic bearing consists 
of three main-poles and three sub-poles equally spaced, 
respectively, along the periphery of the stator by   
shown Fig. 3(a). This rather unusual configuration makes 
it hard to construct a linear system model in a usual way. 

Using the conventional Cartesian coordinates, there 
appear nonlinear quadratic off-diagonal terms in the 
stiffness matrix, which cannot be properly expressed by 
first order linearized stiffness coefficients. This means 
that the system can only be represen

red

ted by a non-linear 

 

 

model in the Cartesian coordinates.  

ⓐ 

FIGURE 3(a): Magnetic flux path of radial AMB 

FIGURE 3(b): Simple model of radial AMB 
 
Here, the redundant coordinates are introduced to 
construct the simple linear model. The proposed 

undant coordinates ( 1 2 3, ,q q q ) have the same structure 
as the configuration of the physical model. Figure 3(b) 
shows the simple model of the radial three-pole magnetic 
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bearing part, where *K and ,  1 3,kf k = ∼ are the 
displacement (negative) stiffness and electromagnetic 
force at each coordinates. 
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The current stiffness, 
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p  are the distances of two bearings from the C.G. 
point of the rotor. 
To derive the equation of motion, the Lagrangian,  for 
conservative system is needed with respect to C.G. given 
by 

L
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MODELING AND CONTROL OF PROPOSED 
SYSTEM 
The proposed system consists of radial three-pole 
magnetic bearing and axial permanent magnet bearing. 
And the control input dial three-pole 
magnetic bearing part. For this rea bearing 
redundant coordinates ( 1 2 3 1 2 3, . , , .q q q p p p ) is convenient 
compared to the C.G. coordinates ( , , ,y zy z θ θ ). H

 (5) 

 

ere, 
nly two transforms  bearing 
dundant coordina
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T
y zy z θ θ=

=

(4)
g

)

q
 

 the transform matrix between physical 
oor  and redundant coordinates ( ) 

given by [4] 
 

 

here,  is the mass of the rotor,  is the radius of the 
permanent magnet bearing, 

m R
J  and dJp  are the polar 

moment of inertia and diametrical moment of inertia at 
each, 

o  are needed between
re tes and C.G. coordinates given by *K xK and  are displacement stiffness of radial 

magnetic bearing and axial stiffness of axial PM bearing, 
and (6) (4)

r b gq = T T q Ω

 
1 2 3 1 2 3{ }Tq q q p p p(6q

 
where rT  is

 is the rotational speed of the rotor. Note that the 
gyroscopic moment and moment force due to the 
permanent magnetic bearing, which is significant on 
disk-type rotor. Using the Lagrangian, , the Lagrange 
equation of motion is needed for deriving the system 
equation. Here, the system model is four degree of 
freedom excluding axial direction,
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This means that Lagrangian equation of motion for 
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b gq = T q here,  is the Lagrangian defined for a conservative 
system, and l

L
λ  is the Lagrange multiplier, which is a 

required force to satisfy the constraint condition in Eq. 
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(6). The equation of motion in Eq. (5) may be rewritten 
about the bearing redundant coordinate using transform 
matrix in Eqs. (3) and (4) considering the constraint 
condition given by 
 

  (8) 
{ }1 2 3 1 2 3, Tq q q p p p=

Mx+Gx + Kx = f

x
 
here , , M G K ,  are inertia, gyroscopic, stiffness, 
and electro magnetic force. Note that  and 

f
M K  are 

mutually coupled between active and permanent magnet 
bearings, and confirmed that the skew symmetric 
property in  [A.1]. And Lagrange multipliers can be 
obtained like as 

G
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The magnetic force,  can be expressed in substituting 
Eq. (9) into (8). 
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Here, it is confirmed that electro magnetic force acts on 
radial magnetic bearing part with mutually coupled. 
To stabilize the system, the identical PD controller is 
employed at each electro magnet given by 
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where iK  is a current stiffness and ji  is the control 
current at each pole. sK  AK  are sensor and power 
amplifier gain at each. PK  and dK  are the P- and D- 
gains, respectively, of the controller. When decoupled PD 
controller in Eq. (11) is employed, magnetic force, , in 
Eq. (10) can be rewritten by 
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Here, the electro magnetic force can be decoupled. This 
means that applying the identical PD control scheme, the 

system equation can be diagonalized and system equation 
in Eq. (8) may be expressed by 
 
  (13) * *

d pMx + (G + K )x + (K + K )x = 0
 
Note that the electro magnetic force affect the whole 
system such as active and permanent magnet bearing, 
because system is mutually coupled. 

forward conical mode 

translational modes 

backward conical mode 

1X excitation line 

 
FIGURE 4(a): Whirl speed chart for proposed system 

translational modes 

forward conical mode 

: backward conical mode 

 
FIGURE 4(b): Root-locus increasing rotating speed 

 
Figure 4(a) and 4(b) show the whirl speed chart and root 
locus plot at each. It is confirmed that the disk type rotor 
which is dominant on the gyroscopic effect shown Fig. 
4(a). In root locus plot, Fig. 4(b), backward and forward 
conical modes have almost small damping due to the 
passive stability using axial permanent magnet bearing 
while translational modes have sufficient damping. 
 
 
MODAL CONTROLLABILITY/OBSERVABILITY 
For examining the modal controllability and observability 
of proposed system using decoupled PD controller, Eq. 
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(13) is described in the state space representation as 
follows: 
 

  (14) 
[ ]i i i iq p q p TT
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Here, we can describe the above system by using modal 
decomposition  as TΦΛΨ
 
 TX =ΦΛΨ X + Bu  (15) 
 
where is the diagonal matrix of eigenvalues, 
and  and 

12 12R ×∈Λ
12 12R ×∈Φ 12 12R ×∈Ψ  are the right and the left 

modal matrices whose columns consist of the right and 
the left eigenvectors of the system matrix, A . If the 
initial value is assumed to be zero, then the output 
response of the system in Eq. (15) can be obtained as 
 

 ∫
ft Λ(t -τ) T

0
Y = CΦ e {Ψ B}u(τ)dτ, Y(0) = 0  (16) 

 

In Eq. (16), the matrix term  represents the 
channel from control input to system’s modes and the 
matrix  represents the channel from system’s 
modes to output. These two matrices are closely related 
with system’s controllability and observability. Based on 
that, the modal controllability and observability can be 
given by [6] 
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Here, ijν  reflects the degree of controllability of th 
mode from th control input. ki

i
j μ  is taken to be an 

indication for the degree of observability of the i th 
mode to th output. Figures 5(a) and 5(b) shows the 
modal controllability and observability of proposed 
system increasing rotational speed. 

k

 

 

translational modes 
(forward and backward) 

backward conical mode 

forward conical mode 

FIGURE 5(a): Modal controllability of proposed system 
 

 

translational modes 
(forward and backward) 

forward conical mode 

backward conical mode 

FIGURE 5(b): Modal observability of proposed system 
 
Above these figures, they show that the low 
controllability and observability in backward conical 
mode due to the axial permanent magnet bearing with 
low damping. 
 
 
EXPERIMENTAL RESULTS 
Figure 6 shows the experimental setup to test the 
performance of the prototype AMB system developed in 
the laboratory. During the tests, two compressed air 
nozzles of maximum pressure equal to Pa were 
placed opposite to each other to exert a pure torque to the 
rotor. The specifications of the proto type are listed in 
table 1. 

53 10×

The levitation test of the prototype AMBs has been 
performed at rest from its dead weight equilibrium with 
identical PD controller (P-gain: 3.0, D-gain: 0.003). 
Figure 7(a) shows the typical transient response of the 
rotor when the levitation control action starts at 2.04 
second. Note that the rotor position is quickly stabilized 
within about 0.1 second and the residual displacement 
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remained less than 10㎛ mainly due to axial and tilting 
modes about 10Hz. The maximum control current to each 
power amplifier was less than 1.0 A and the steady-state 
residual current was kept below 10 mA, which is quite 
satisfactory. Not that since the axial and tilting motions 
are passively stable, they have very low damping which 
may affect the system stability. 

In a speed-up test, the rotor could successfully rotate over 
5,000 rpm as it was levitated. Figure 7(b) shows the 
radial vibration at every 200 rpm. There was large 
amplitude at 800 rpm due to the axial mode with low 
damping, and vibration was well suppressed under 30㎛. 
Considering the nominal air gap of 200㎛ (the clearance 
of touch-down bearing is 120㎛), the rotor could be 
driven to a rotating speed up to 5000 rpm without 
touching any of the surrounding components. 

 
TABLE 1: Design parameters 

 Stator Rotor 
Diameter 32 mm Outer diameter 42.4 mm 
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Thickness 10 mm Inner diameter 32.4 mm 
Thickness of 

PM 2 mm Air gap 0.2 mm 

No. of PM 3 Rotor mass 166 g 
No. of Coil 75   

 

 
FIGURE 7(b): Radial vibration increasing rotational 

speed 
 
 
CONCLUSIONS 
We propose the redundant coordinates and identical PD 
control scheme. These are employed for linear modeling 
and controller design of the three-pole AMB, which has 
an inherent nonlinearity, when formulated in the 
conventional Cartesian coordinates, due to its 
configuration. Based on redundant coordinates and its 
equation of motion, modal analysis and modes’ 
controllability are numerically examined. To verify the 
proposed control scheme, a prototype AMB was built for 
its performance test, where only the radial motions were 
actively controlled, while the tilting and axial motions 
were passively stabilized by the permanent magnets. The 
proposed AMB succeeded in achieving the stable 
levitation and rotation up to 5000 rpm. 

 
FIGURE 6: Experimental setup of proposed AMBs 
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FIGURE 7(a): Transient response 
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APPENDIX  A. 
The equation of motion using bearing redundant coordinates is given by 
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