
  

  

ABSTRACT 

When we design a controller for the active magnetic bearings 
that support a large rotor, it is important to have an accurate 
model of the rotor.  For the case of the flywheel that is used to 
store energy, an accurate rotor model is especially important 
because the dynamics change with respect to the running 
speed due to gyroscopic effects. In this paper, we present a 
procedure of obtaining an accurate rotor model of a large 
flywheel energy storage system using finite-element method. 
The system is designed to store 5kWh at maximum speed of 
18,000 rpm. The model can predict the first and the second 
bending mode which match well with the experimental 
results obtained from a prototype flywheel energy storage 
system. 

INTRODUCTION 

Flywheel energy storage systems (FESS) store the electric 
energy in terms of kinetic energy and convert this kinetic 
energy into electric energy when necessary.  Recently, the 
FESS’s are being actively developed for load leveling, power 
quality improvements and uninterruptible power supplies 
(UPS) because they are environmentally friendly and can 
sustain infinite charge/discharge cycles [1].  These systems 
commonly employ either passive or active non-contacting 
magnetic bearings to support the rotor running at high 
rotational speeds [2].  Typically large systems prefer active 
magnetic bearings (AMB) due to better damping 
characteristics, albeit the need of a feedback controller. 

To maximize the energy storage capacity, a FESS usually 
choose a radially thick rotor so that the principal mass 
moment of inertia is larger than the transversal counterpart 
( / 1p tJ J > ).  In that case, the dynamics of rotor changes 
significantly with respect to the running speed because of the 
gyroscopic effect.  The flywheels may run up to near the first 
 
 

critical speed in order to store as much energy as possible.  
Thus, the controller design for the magnetic bearings must 
take into account the flexibility of the rotor [3].  In order to 
design the controller properly, therefore, it is important to 
have a tractable yet accurate model of the flexible rotor. 

Considerable research has been done on the modeling of 
flexible rotor.  Many authors including Jayanth et. al. [4], Ren 
et. al. [5], Murata et. al. [6], and Arredondo et. al. [7] studied 
the dynamic modeling of the small size flexible rotor.  
Murphy et. al. [8, 9] investigated the rotordynamics of a large 
flywheel supported by ball bearings.  Hawkins and Murphy 
[10] described a rotordynamic model of a titanium flywheel 
supported by magnetic bearings. 

In this paper, we present a procedure of obtaining a flexible 
rotordynamic model of a large composite flywheel supported 
by a pair of radial active magnetic bearings and a hybrid 
thrust bearing.  The rotor model is derived by using the finite 
element method (FEM) [11].  The flexible rotor model thus 
obtained was validated against the rotor transfer function 
measured through experiments. 

 

SYSTEM DESCRIPTION 

The schematic view of the system is illustrated in Figure 1.  
At the center of the system is a large flywheel made of 
double-layer fiber-reinforced composites. The flywheel is 
radially supported by the upper and lower active magnetic 
bearings. Since the magnetic bearings are open-loop unstable, 
the positions of the rotor are measured by a set of sensors 
located at the bottom and the top of the rotor, and delivered to 
the controller.  The thrust bearing is a hybrid type where the 
weight of the rotor is supported by a set of permanent 
magnets while an electromagnetic actuator generates the 
dynamic control forces.  The axial motion of the rotor is also 
measured by a position sensor.  A high-speed motor/generator 
completes the system. 
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The flywheel system is designed to store 5 kWh as the 
usable energy with the maximum running speed of 
18,000rpm. The rotor mass including the flywheel is 235 kg. 
Diameter of the flywheel is 716mm, and the axial length of 
the rotor is 778 mm including the thrust collar and the cap.  
The principal and the transverse mass moment of inertia are 
13.2 kg-m2 and 9.4 kg-m2 respectively. The flywheel is 
operated in a vacuum chamber to minimize the windage loss. 

The radial magnetic bearings are an eight-pole design. Two 
adjacent poles are wired in series and two opposing pairs 
control each axis of the bearing. We employed the bias 
linearization method for the control of the radial bearings [12], 
where the current in each pair of coils is the sum of the 
constant bias current and the control current. The current 
design of the bearings has the pole face area of 8.8 cm2, 
which results in the static load capacity of approximately 
1000 N per bearing, assuming the saturation density of 1.2 T.  
Since there are two bearings in the system, the total static load 
capacity in the radial direction is about 2000 N. 

In order to decrease the power consumption of the thrust 
actuator, an opposing pair of permanent magnets is used to 
carry the weight of the rotor. The design of the thrust bearing 
depends on the force and axial stiffness of this magnet pair, 
which can be calculated by the equivalent current sheet 
method [13]. The magnets are sized so that the repulsive force 
is exactly the same as the weight of the rotor. The total axial 
force is the sum of the force by the actuator, the force by the 
permanent magnets and the weight of the rotor. Assuming 
that the maximum static loading on the thrust actuator is 1G, 
we can determine the size of the actuator.  For the rotor which 
has the mass of 250 kg, the minimum pole face area is 
calculated to be 21.16 cm2. Based on this number, we 
designed the thrust actuator. 

For many magnetic bearing systems, decentralized control 
is used. In that case, each AMB is independently controlled 
and there is no cross coupling between the x- and y-direction. 

However, in the case of the system with strong gyroscopic 
effect, the plant dynamics changes with the rotational speed 
so that gyroscopic effect has to be considered for controller 
design. Gyroscopic effect can be compensated by cross 
feedback control [14]. We employed a cross feedback control 
with decentralized proportional-derivative (PD) controllers to 
compensate gyroscopic effect. The controller is implemented 
using xPC toolbox and Real Time Workshop [15] at the 
sampling rate of 10 kHz.  
 

SYSTEM MODELING 

Flexible rotor model 

The use of finite element method (FEM) to obtain a flexible 
rotor model is well established.  If we assume that the radial 
dynamics of the rotor is decoupled from the axial dynamics, 
we can use Rayleigh’s beam theory or Timoshenko’s beam 
theory to greatly simplify the finite element model of the rotor.  
In this paper, we take the approach by Nelson [16] which is 
succinctly described in [11].  For the sake of presentation, we 
will summarize the rotor model in this paper. 
If we divide the rotor into many sections each of which has 
uniform geometry and material properties, each section 
(element) can be illustrated as shown in Figure 2, where l  is 
the length of the element.  The origin of the local coordinates 
O xyz−  is taken at the left end of the element. 

The time dependent displacement vector of the nodal point 
is denoted by [ , , , ]T

x yu v φ φ .  The displacement vectors at the 
left and right ends of an element are defined as 

1 2 3 4[ , , , ]Tq q q q  and 5 6 7 8[ , , , ]Tq q q q . The infinitesimal 
thickness of a sliced disk at the position s  is ds . Since the 
rotations ,x yφ φ  have the differential relationships with the 
translations ,u v  with respect to ds , the quantities ,u v  can 
be defined by linear combinations with shape functions. The 
resulting equations of motion for the element are described as 
 

   + + =e e e em q g q k q f                    (1) 
 

The vectors , eq f  are the displacements and the forces 
respectively. The matrices , ,e e em g k  are the mass matrix, 
gyroscopic matrix, and stiffness matrix of the element 
respectively. In order to obtain equation of motion for entire 
rotor, we have to apply boundary conditions between each 
element. Then governing equation of complete rotor can be 
written as 

 
+ + =MQ GQ KQ F           (2) 

 
where the global mass, gyroscopic, and stiffness matrices 

are assembled from the element matrices as 
 

1 1 1
, ,

n n n
i i i
e e e

i i i= = =

= = =∑ ∑ ∑M m G g K k    (3) 
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FIGURE 1.  Schematic view of the rotor for a flywheel 
energy storage system  
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Active Magnetic Bearing Model 

If the bias linearization method is used for the control of 
active magnetic bearings, we can obtain a linear model of the 
bearing, assuming that the rotor displacements are small. 
Using the notations used in (2), we can express this linear 
model as 

 
x a= − +F K Q K u            (4) 

 
where the bearing stiffness matrix xK and the actuator gain 
matrix aK  are calculated from the parameters of the bearing 
such as the nominal air gap, the number of turns per pole, and 
the pole area. Combining (2) and (4), and defining a state 
vector as 

 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Q
x

Q
               (5) 

 
we can obtain a model for the rotor suspended by a set of 
active magnetic bearings as follows. 

 

1 1 1( )x a
− − −

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦

0 I 0
x x u

M K K M G M K
 (6) 

 

Sensor and Controller Model 

As mentioned previously, a set of position sensors measure 
the position of the rotor and provide feedback signal for the 
controller. The simple model of the rotor would be just 
selecting appropriate nodal coordinates where the sensors are 
locating.  Typically, the sensor signals are put to pass through 
a filter. Then the sensor model can be conveniently expressed 
in a transfer function format as 

 
( )y H s x=               (7) 

 
Also, the PD controller with a cross feedback can be 

expressed in terms of a transfer function as 
 

( )u C s y=               (8) 
 

The system model can be obtained by combining (6), (7), 
and (8). Because the gyroscopic matrix G  in (6) is 
dependent on the speed, the dynamics of the whole system is 
speed-dependent. 

 

EXPERIMENTS AND SIMULATION RESULTS 

We obtained the experimental rotor transfer function from the 
system for the purpose of validating the flexible rotor model 
we derived.  We injected test signals into the controller output 
and then measured the rotor response signals from the sensors 
(shown in Figure 3).  Using swept sine signal as a test signal 
[17], we can calculate the frequency response function (FRF)  
from 
 

( )( )
( )

Out sFRF s
In s

=            (9) 

 
The dotted lines in Fig. 4 are the frequency response 

functions measured from the upper and lower position 
sensors.  These frequency response functions represent the 
dynamics of the plant which includes the rotor, active 
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FIGURE 2. Typical rotor element and 
coordinates [11]. 

 
FIGURE 3. Block diagram for FRF 
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FIGURE 4. Comparison of bode plots of FRF and 
model simulation for upper and lower AMB 
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magnetic bearings, amplifiers and sensors while the rotor is at 
standstill.  The upper FRF shows the first bending mode at 
270 Hz and the second bending mode at 880Hz. The lower 
section of the rotor has somewhat higher first bending mode 
at 700Hz.   The solid lines in Fig. 4 are the frequency response 
functions calculated from the flexible rotor model we derived 
earlier.  The model predicts the first and second bending 
modes fairly accurately.  Since the sampling rate is 10 kHz, 
we expect somewhat distorted FRFs close to 5 kHz. 

Experimental results confirm the strong gyroscopic 
coupling of the flywheel.  Figure 5 shows the frequency 
response functions at several different running speeds. The 
forward conical mode appears before 4000 rpm and the first 
bending mode splits with the increasing running speed. 
Simulation model also exhibits the similar behavior with 
respect to the running speed, which is shown in Figure 6. 
Simulated results show that the forward conical mode appears 
before 2000 rpm which is lower than the experimental result. 
The discrepancy may be due to the modeling of the discrete 
disks and flywheel which we consider as concentrated mass. 

Figure 7 shows the Campbell diagram that summarizes the 
dynamics of the rotor.  In Fig. 7, the first bending mode splits 
into forward and backward mode as previously noted in Fig. 5 
and 6, and the behavior of the forward conical mode matches 
well with the simulation results. 

We ran the flywheel up to 9,000 rpm, and measure the 
sensitivity at several different running speeds.  As shown in 
Fig. 8, the sensitivity has a peak at around 120 Hz when the 
running speed is 3,000 rpm.  This peak is the source of poor 
stability [18] and is caused by the forward conical mode, 
which is another evidence of the strong gyroscopic coupling.  
To run through this mode, we added notch filters to the 
decentralized PD controllers of both magnetic bearings.  
Figure 9 is a waterfall plot measured from the upper sensor 
from 0 rpm to 9,000 rpm. The waterfall plot indicates that the 
the synchronous vibration is the major disturbance to the 
system.  

 
 

CONCLUSIONS 

Having an accurate rotor model is very important to properly 
design the controller of the system especially whose 
dynamics changes with the running speed. However, it is 
usually difficult to model the flexible rotor because many 
flexible disks or blades are mounted on the rotor.  In this 
paper, we used FEM to derive a flexible rotor model for 
5kWh flywheel energy storage system. The rotor model 
predicts well the first and the second bending mode of the 
upper section of the rotor, and the first bending mode of its 
lower section.  We ran a prototype 5kWh FESS up to 9,000 
rpm which is well below the target speed.  Decentralized PD 
controllers with cross feedback were not able to provide 
sufficient stability that is required to achieve the target speed.  
We are currently evaluating other forms of controller such as 
MIMO controller and gain scheduling [10]. 

 
FIGURE 6. Comparison of bode plots of upper AMB at 
the different speed (simulation) 
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FIGURE 7. Simulated and measured Campbell diagram of 
the rotor.  
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FIGURE 9 Waterfall plot measured from the upper sensor 
during spin up from 0 rpm to 9000 rpm 
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FIGURE. 8 Comparison of Sensitivity Transfer Function 
of FESS at the different speeds (measured from the upper 
sensor) 
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