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Abstract—This paper is concerned with modeling and active
vibration control of a 1.23-m long flexible shaft on active
magnetic bearings that is designed to model a small industrial
compressor and to serve as a platform for investigating emerging
control schemes. Aerodynamic cross-coupled stiffness is one of
the main contributors to rotordynamic instability in modern
turbo-machines. The destabilizing effects of the cross-coupled
stiffness are demonstrated. H2 and H∞ synthesis approaches are
used to design controllers that may stabilize the rotor-bearing
system over a wide range of cross-coupled stiffness. Stability
analysis and dynamic simulations of the resulting closed-loop
systems are performed and recommendations made on the best
means of achieving the desired performance and stability of the
rotor-bearing system. The control and data-acquisition are in the
process of being implemented in real-time using a DSP system.

Index Terms—Keywords: Active magnetic bearings, Cross-
coupled stiffness, Robust control, Real-time systems

I. INTRODUCTION

Active magnetic bearings (AMBs) represent an exciting
alternative to existing mechanical bearing designs in a variety
of turbo-machines. Low power loss, contact-free dynamics,
high-speed operation, direct control of forces on the rotor
leading to lower vibration levels, lower maintenance costs
and longer system life are all well understood advantages
of implementing an AMB system [1]. Much of the effort to
realize these gains lies in the design of the control law and
accompanying sensor and actuator electronics.

Aerodynamic cross-coupling forces in industrial compres-
sors and turbines are a result of fluid structure interactions
produced by flow differences in clearances around centrifugal
impellers and gas/liquid seals, hydrodynamic bearings [2],
[3]. The sub-synchronous, non-conservative and self-exciting
nature of these forces is of major concern to machinery
designers and operators as they create potentially unstable
rotor vibrations, which can lead to serious machine damage
when insufficient damping is available [2], [5]. While some
theoretical models for the factors that contribute to cross-
coupling are available, generally they are not very accurate. A
further complexity arises when parametric and non-parametric
dynamics are introduced, e.g., speed-dependent gyroscopic
behavior. This parameter varying control problem provides an
opportunity for the dynamic properties of AMB suspension
to assure robust stability in many cases. Adaptive control
schemes using the have been applied to the problem of cross-

Figure 1. A 3-D model of the test-rig shaft showing support AMB lamination
stacks (a,f), disturbance AMB lamination stacks (c,e), gyroscopic disks (b,d),
a flexible disc pack coupling (g) and drive attachment (h).

coupled stiffness in rotor-AMB systems, however they have
been limited to small rigid rotors [6], [7], [8].

Our goal is to design and build a test bed with a flexible,
gyroscopic rotor mounted on AMBs, subject to destabilizing
cross-coupling stiffness and design a high performance con-
troller to provide robust stability. In producing a test rig of a
scale similar to a small industrial compressor, we are to exam-
ine some of the challenges seen in industry and investigating
the development of appropriate industrial specifications into
valid control design objectives.

The test rig we are constructing has a 1.23m long steel
shaft weighing 440N with a maximum running speed of
14,200RPM. As shown in Fig. 1, four laminated Si-Fe bush-
ings are mounted with a locational interference shrink fit onto
the shaft for attraction by the non-drive end (a) and drive-end
(f) radial support AMBs and the two radial (c,e) disturbance
AMBs. The bearings operate with a 0.38mm air gap and
each has a peak load capacity of 800N [9]. This combination
of AMBs allows either between-bearing or overhung rotor
configurations, potentially representing axial and centrifugal
compressor designs, to be realized. In addition, two discs (b,d)
of different diameters are mounted on the shaft to mimic a typ-
ical compressor rotor blade arrangement. Disc b would serve
as a dual purpose of a thrust AMB collar for controlling axial
motion. Eddy current displacement sensors (Kaman Measuring
Systems) are differentially mounted in close proximity to
each bearing bushing to reduce non-collocation and spillover
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problems. A flexible disk pack coupling is used to mitigate the
effect of angular and offset misalignment between the drive
shaft and the test rig. Copley Controls models 413 and 422
analog switching power amplifiers were selected to drive the
bearing coils based on the power output required to generate
the calculated maximum available force slew rate. Real-time
digital control is implemented using a PC-based DSP solution,
the M6713 board (Innovative Integration, Simi Valley, CA).

II. SYSTEM MODELING

A. Rotordynamics

A high fidelity finite element rotor model containing 49
nodes was constructed for the plant model to determine critical
speeds and mode shapes using a custom FEM package. The
first bending mode for the free-free shaft was calculated at at
11,400 RPM. The resulting critical speed map and free-free
rotor mode shapes are shown in Figs. 2 and 3, respectively.
Each node was assigned 4 physical degrees of freedom,
representing translations in the x- and y-directions and angular
displacements about the xz (θy) and yz (θx) planes. This
generates entries for the mass (M), internal shaft stiffness (Ks),
damping (C) and gyroscopic (G) global matrices to enable
the Lagrangian representation of the second order dynamical
system,

Mq̈+(C +ωG)q̇+Ksq = Fm +Fu +Fw (1)

where

q =
[

x1 θy1 ... xn θyn y1 θx1 ... yn θxn

]T
is the 196× 1 system state vector, Fm represents the force
due to the AMBs, Fu represents the synchronous excitation
force due to rotor imbalance, and Fw represents external
disturbances, e.g., destabilizing cross-coupling stiffness, static
and dynamic loads. Reduction of the plant order is necessary
to facilitate a practical control design. A planar modal co-
ordinate transformation was chosen to preserve the first 7
modes representing an approximately 3.5kHz bandwidth that
is within the power bandwidth of the PWM amplifiers. This
transformation (q̃ = T q) is determined by solving the free-free
undamped eigenvalue problem for a real matrix T , the subset
of eigenvectors corresponding to the modes to be retained. Eqn
(1) is then replaced by the following,

T T MT q̈+T T (C+ωG)Ṫ q+T T KsT q = T T (Fm +Fu +Fw) (2)

and the resulting model now has 10 states.

B. Linearized cross-coupling stiffness model

Using a linear model for the aerodynamic cross-coupled
stiffness generated by the AMB at the shaft mid-span, the
effective cross-coupling force is calculated by,

Fxc =−χ

[
0 1
−1 0

][
qxmid
qymid

]
=−χKxcq (3)

The magnitude of the cross-coupling effect is controlled by a
scalar χ varying between 0 and 40MN/m [7].

Figure 2. Critical speed map for the rotor.

Figure 3. The first five free-free rotor mode shapes.

C. Rotor-bearing model

Using a linear magnetic bearing model [10] with nominal
current stiffness (Ki = 191.8N/A) and position stiffness (Kx =
2.62× 106N/m), we can express the force provided by the
support AMB as,

Fm = Kii+Kxx (4)

The unbalance force, Fu, as a result of residual rotor imbalance
at discs b and d (see Fig. 1), is calculated as

Fu = meuω
2 cos(ωt)+meuω

2 cos(ωt +θ) (5)

where m is the shaft mass, eu = 250µm-mm the unbalance
eccentricity as per the API 617 specification for centrifugal
compressors, ω the shaft rotation speed, and θ the phase lag
between the phasors representing the unbalance force vector
at each disc. Finally, a state-space formulation of the dynamic
system in Eqn (1) is the presented below

ẋr = Arxr +Bri i+Brww (6)
y = Crxr (7)
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where,

Ar =
[

0 I
−M−T

r ΠM−1
r −M−T

r (Cc +ωGc)M−1
r

]
Π = χKxc−BmKxBT

m +Ks

Bri =
[

0
M−T

r BmKi

]
Brw =

[
0

M−T
r Bw

]
Cr =

[
CmM−1

r 0
]

with Bm and Cm being the coefficient matrices for the con-
trol actuator input and displacement measurement output,
respectively. To arrive at this first-order form, the symmetric
global mass matrix M is eliminated by Choleski factorization
(M = MT

r Mr) and the following transformations performed
[11],

xr , Mrq Cc , M−T
r CM−1

r Gc , M−T
r GM−1

r .

D. Sensor and amplifier models

The eddy current displacement sensors are modeled as a
first order system with a gain (Ks = 8mV/µm) and cut-off
(ωa = 20kHz) corresponding to the sensitivity and bandwidth
of the probe heads. For a single differential probe arrangement,
the transfer function from displacement to voltage output is,

vs

y
= Ks

ωa

s+ωa
(8)

The transfer functions for all the sensors are then combined
into a single state space model with the following labels,

Gs(s) :
(

As Bs
Cs Ds

)
(9)

The PWM amplifiers are modeled using transconductance,
where a control voltage (u) is suggested by the controller
and a desired current (ic) is supplied to the AMB coils. The
amplifiers have an internal feedback loop to ensure the target
current is realized. The power bandwidth of the amplifiers is
affected by the largely inductive AMB coil impedance. The
following is a transfer function for a single amplifier actuating
in one degree of freedom

ic
u

=
Kpa

Lc +Rc + γKpa
(10)

where Kpa is the amplifier reference gain, γ is the current
feedback sensitivity, and Rc and Lc are the resistance and
inductance of a single AMB control quadrant, respectively.
All these parameters are obtained experimentally. As with the
sensors, the transfer functions for all 8 amplifiers (2 amplifiers
/ DOF) have a state-space representation as,

Ga(s) :
(

Aa Ba
Ca Da

)
(11)

Figure 4. System overview.

E. Generalized plant

The MIMO system model representing the combined rotor-
bearing-amplifier-sensor model has 4 control inputs (u =
[vx1vy1vx2vy2 ]

T ), 4 measured outputs (y = [yx1yy1yx2yy2 ]
T ), and

28 states comprising 20 modal reduced shaft states (xr), and
the remaining from the amplifier (xa) and sensor (xs) models.
In addition there are 12 exogenous inputs (w = [w1. . .w16]T )
used to introduced external forces onto 12 pre-determined
shaft locations. For example, several of the disturbance inputs
are used to introduce synchronous unbalance excitations, and
other inputs to produce static force loads on the shaft. The
performance metric (z = [ix1 iy1 ix2 iy2 ]

T ) consists the estimated
control currents generated in each AMB. An overview showing
the interconnection of the models and the flow of signals is
shown in Fig. 4.

The generalized plant, G(s), can then be outlined as,

G(s) :


ẋr
ẋs
ẋa
z
y

=


Ar 0 BriCa Brw 0

BsCr As 0 0 0
0 0 Aa 0 Ba
0 0 Ca 0 0
0 Cs 0 0 0




xr
xs
xa
w
u


(12)

With more compact notation we represent the plant with the
following state-space representation,

G(s) :

 A B1 B2
C1 D11 D12
C2 D21 D22

 (13)

where

A =

 Ar 0 BriCa
BsCrAs 0 0

0 0 Aa


B1 =

 Brw

0
0

 , B2 =

 0
0

Ba


C1 =

[
0 0 Ca

]
, C2 =

[
0 Cs 0

]
D = 0
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Figure 5. Block diagram of rotor-AMB plant and LQG controller with
integral action and reference input.

III. ROBUST CONTROL DESIGN

A. LQG (H2) synthesis

An optimal control design approach was followed to min-
imize a quadratic performance index, J(u), and to obtain a
linear control law u = −Kx. The advantage of this approach
is that the performance index can correspond to physical
concepts such as time or energy expended by the controller
or plant [12]. Linear quadratic (LQ) is a special case of the
general H2 problem and provides a solution for MIMO systems
in which tuning of decoupled PID controllers to achieve
stability targets is daunting due to the number of parameters
for even a simple MIMO system [13]. A general form of the
performance index is given by

J(u) =

∞̂

0

{
xQxT +uT Ru

}
dt (14)

where Q = QT > 0 and R = RT > 0 are weighting matrices
that specify the contribution of state energy and controller
input energy to the overall performance index. Minimizing
the state energy will reduce the settling time and overshoot
of the system, while minimizing the control input energy will
reduce the noise sensitivity of the system [12].

We will set R to an identity matrix and vary Q iteratively
to find the control law with the best step response, and control
gains that are not unacceptably large. Output feedback will be
used since a limited number of displacement sensors cannot
provide total state information for the rotor-bearing-amplifier
system. However, since the system is stabilizable, a Kalman
filter can be used to provide state estimates that will converge
to the actual plant states, using Gaussian measurement and
plant noise models. The combination of linear quadratic reg-
ulator (LQR) and Kalman filter is a linear quadratic Gaussian
(LQG) control. Fig. 5 provides an overview of the LQG
controller with integral action (to eliminate steady state error).

Three controllers, A, B, and C, were synthesized with
χ values of 0, 20 and 40MN/m, respectively, covering the
range of cross-coupling stiffness expected. These controllers
were then used to attempt to stabilize eight different plants
with χ over this range. Figs. 6, 7 and 8 show the effect of

Figure 6. Effect on closed-loop poles of the varying cross-coupling stiffness
with LQG controller A (designed at χ = 0MN/m.

Figure 7. Effect on closed-loop poles of the varying cross-coupling stiffness
with LQG controller B (designed at χ = 20MN/m).

varying cross-coupled stiffness on the closed-loop poles under
controllers A, B and C.

B. H∞ synthesis

The H∞ norm provides a measure of the worst-case norm
(γ) of the transfer function from disturbance input (w) to
performance metric (z), Tzw( jω). In particular, this norm is
minimized while ensuring the closed-loop system is stable,
thus producing a H∞ suboptimal controller [13], [14]. The
suboptimal H∞ cost can be represented as,

||Tzw||∞ , sup
ω

σmax(Tzw( jω)) < γ (15)

As before, three controllers, D, E, and F, were synthesized
with χ values of 0, 20 and 40MN/m, respectively, covering
the range of cross-coupling stiffness expected. The MATLAB
command hin f syn was used to obtain an LTI model of the
H∞controller. Eight rotor-bearing-sensor-amplifier plants with
χ values varying over the specified range were realized and
a generalized feedback made with each controller. Figs 9

－15－



Figure 8. Effect on closed-loop poles of the varying cross-coupling stiffness
with LQG controller C (designed at χ = 40MN/m).

Figure 9. Effect on closed-loop poles of the varying cross-coupling stiffness
with H∞ controller D (designed at χ = 0MN/m).

and 10 are pole-zero maps of the closed-loop systems using
controllers D and F respectively.

IV. DISCUSSIONS

For the LQG controller, it was observed that changing the
weighting criteria Q and R did not greatly affect the locations
of the unstable closed-loop poles. The pole-zero maps for the
LQG controller (Figs. 6-8) show that the closed-loop systems
only exhibited stability for a limited range of cross-coupled
stiffness in the neighborhood of the value of χ that was used
in the control design. Using a greater value of χ in control
synthesis did not guarantee that all stiffness less the design
value would be stabilized. The same was also true of the H∞

synthesis approach - as Fig. 10 shows that a controller able
to stabilize a plant with χ = 40MN/m is unable to stabilize
the other plants with χ = 0− 30MN/m. The plots illustrate
the primary drawback of the LQG and H∞ approaches as
executed in this study - lacking a priori knowledge of the
nature of the cross-coupling stiffness effect, our control choice
is limited. However, there exist additional control strategies

Figure 10. Effect on closed-loop poles of the varying cross-coupling stiffness
with H∞ controller F (designed at χ = 40MN/m).

that we anticipate in further work and may enable stabilization
over a wider range of cross-coupled stiffness. Two of these are
gain scheduling and piece-wise µ-synthesis for robust control.

1) Gain scheduling: Gain scheduling of robust controllers
with bumpless transfer has been implemented in flywheel
AMB systems[15]. In this particular flywheel application
a single LTI controller was unable to stabilize the highly
gyroscopic rotor over the entire speed range, and hence an
innovative means of dynamically switching between multiple
robust controllers without a “bump” was demonstrated. A
similar approach could be applied to our rotor-AMB system,
since we have cross-coupled stiffness as a parameter of a linear
parameter varying (LPV) plant and we can “piece” together
multiple controllers that would ensure a much larger stability
range. An additional challenge to the issues encountered in
[15] is the need to determine the value of cross-coupled
stiffness at known location(s) on the shaft before the control
switching can be performed.

2) Robust control via µ-synthesis: The structured singular
value, µ , is an important tool in the analysis of uncertain
systems as well as in the synthesis of robust controllers
[12]. Parametric and/or non-parametric uncertainties present
in the plant model are captured through this approach, and
can be used to represent the speed-dependent gyroscopics and
unknown cross-coupling stiffness present. Techniques such as
DK-iteration can be used to synthesize controllers that may
satisfy the stability and performance demands of the rotor-
AMB system.

V. CONCLUSIONS

This paper presents the modeling of a rotor-AMB system
focusing primarily on the effects of unknown cross-coupled
stiffness on rotor stability. H2 and H∞ control approaches
were only able to stabilize the rotor-AMB system when cross-
coupled stiffness in a small neighborhood of the designed
value . Further work in the direction of gain-scheduled robust
control and µ-synthesis is planned to accomplish the goal of
expanding the stability range with respect to cross-coupled
stiffness.
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