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ABSTRACT  
 
 The work focuses on the design of the auxiliary 
bearings for the primary magnetic system in a new fluid 
film bearing test rig. The design is unique since the 
rotor is supported by the central tested journal bearing 
along with the two magnetic bearings. A three mass 
model for the rig is used to conduct the transient 
analysis of the rotor drop. Hertz contact theory is used 
to describe the contact between the rotor and the inner 
race of the back-up bearings. The analysis included 
different sets of auxiliary bearings as well as different 
levels of damping. 
 
 
INTRODUCTION 
An AMB auxiliary bearing system is designed to support 
the rotor in the case of support loss of AMB.  The 
auxiliary bearing is placed in the stator part of the 
system and it is not active during normal operation.  The 
inactivity of the auxiliary bearing is achieved by the 
existence of a clearance between the inner race of the 
bearing and the rotor surface.  Typically, fifty percent of 
the magnetic bearing air gap [1] is used for the back-up 
bearing clearance.  The drop analysis is governed by the 
forces on the rotor (weight and unbalance forces), 
auxiliary bearing properties (stiffness and damping 
coefficients) and the rotor/stator contact properties 
(friction, contact stiffness and damping coefficients).  
The desirable behavior is that the rotor simply drops 
then oscillates back and forth a few times in the auxiliary 
bearing without large amplitude whirling.  This behavior 
should result in little or no damage in the machine [2].  
Ishii and Kirk [1] formulated a simplified rotordynamic 
model for an AMB compressor.  The model consisted of 
several masses and took into consideration the 
flexibility of the bearing and the housing.  The contact 
model was evaluated using Hertzian contact theory.  A 
transient analysis was conducted in order to track the 
behavior of the shaft before, during and after the drop.  
Zeng et al [3] extended the work of Ishii and Kirk to 

include the effects of the rubbing between the rotor and 
the compressor seal on the drop analysis. 
This work studies the rotor drop analysis of a new fluid 
film bearing test rig, Figure 1.  The primary support 
system of the test rig consists of two magnetic bearings, 
which are also used as actuators to test the journal 
bearing dynamic coefficients.  The tested journal 
bearing is mounted in the center of the shaft between 
the two magnetic bearings.  The auxiliary bearings are 
installed at both ends of the shaft to catch the rotor in 
the case of AMB power loss. The target of this drop 
analysis was to design the appropriate bearings for the 
new test rig. The rotor drop analysis will generally 
follow the work presented in [1] and [3].  The auxiliary 
bearing design will be unique since the tested journal 
bearing will provide a central support for the shaft 
during drop.  The existing stiffness and damping 
coefficients of the bearing will help in reducing the 
impact of the rotor on the auxiliary bearing. Several 
stiffness and damping values are studied in the analysis 
to be able to select the best auxiliary bearing design 
appropriate for the fluid film test rig. 

 
 

 
FIGURE 1: Sectional view of the testing section 

 
 

ROTOR MODEL OF THE TEST RIG 
The test rig consists of a rigid rotor with a diameter of 
0.127 m (5 in.) and length of 0.743 m (29.25 in.).  The 
rotor is modeled as three mass rotor as seen in Figure 2. 
The rotor mass is modeled mainly as a central mass 

－160－



  Younan 2 

(M2) since the rotor runs below the first critical bending 
speed.  The magnetic bearing laminations and the shaft 
mass inside each of the auxiliary bearing are modeled as 
two masses (M1 and M3) at each end of the shaft 
 
 

  
 
FIGURE2: Layout of the three mass model of the rotor 

 
The motion of each mass is described by three degrees 
of freedom: Two lateral displacements (X, Y) and one 
angular displacement (θ) about the axis of the rotor. The 
lateral displacements capture the whirling motion of the 
masses inside the auxiliary bearing clearance.  
The rotational degree of freedom describes the effects of 
the impact and friction on the shaft rotational speed 
during rotor drop. 
The rotor analysis has two cases: before the rotor drop 
and after the rotor drop. Before the rotor drop, the shaft 
is supported by the two magnetic bearing and the 
journal bearing, as shown in Figure 3.  After the drop, 
the rotor starts to interact with the auxiliary bearing 
while still being supported by the journal bearing.  The 
interaction of the shaft with the inner race of the 
auxiliary bearing is described by the normal and 
tangential contact forces.  The contact forces are 
function of the stiffness and damping properties of the 
Hertzian contact area. 
 
GOVERNING EQUATIONS  
 
Central mass before the rotor drop 
 The central mass M2 is supported by the 
damping (Cxx) and (Cyy) and stiffness (Kxx) and (Kyy) 
coefficients of the journal bearing as illustrated in 
Figure 4.  The shaft lateral (Ks) and torsional stiffness 
(Ksθ) relative to the end masses also contribute in the 
motion of the central mass.  Finally, the lateral and 
torsional structural damping are modeled as two 
dampers (Cs) and (Csθ) respectively.   
The shaft stiffness is calculated from the deflection of a 
shaft holding three masses as developed in [4]. 

1 2 1
12EIK 2 4 2s 3L 1 2 1

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

  (1) 

The center of gravity of the central mass (M2) was 
assumed to be located at a distant eu from the geometric 
center. The eccentricity (eu) results from the unbalance 
forces in the rotor.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3:  Schematic of the rotor before/after the 
drop 

 

 
FIGURE 4: Representation of the forces acting on the 

central mass M2 
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The relation between the coordinates of the center of 
gravity (Xc.g., Yc.g.) and the geometric center can be 
formulated as follows: 

c.g.2 2 u 2

c.g.2 2 u 2

X X e cos( )

Y Y e sin( )

= + θ

= + θ
   (2) 

The velocity and the acceleration of the center of 
gravity 

c.g.2 2 u 2 2

2
c.g.2 2 u 2 2 u 2 2

c.g.2 2 u 2 2

2
c.g.2 2 u 2 2 u 2 2

X X e sin       

 X X e sin e cos  

Y Y e cos        

Y Y e cos e sin

= − θ θ

= − θ θ − θ θ

= + θ θ

= + θ θ − θ θ

 (3) 

The equation of motion of the central mass is best 
formulated using Lagrange formulation in order to be 
able to capture the eccentricity of the center of gravity.  
The equations in x, y and θ can be written as follows: 

( )

( )

2
2 2 u 2 2 u 2 2 xx 2 xy 2

s 2 1 3 xx 2 xy 2

s 2 1 3 2

2
2 2 u 2 2 u 2 2 yy 2 yx 2

s 2 1 3 yy 2 yx 2

s 2 1 3

2
2 u

M X e sin e co s C X C  Y

C (4X 2X 2X ) K X K  Y

K (4X 2X 2X ) M g 0

M Y e cos e sin C Y C  X

C (4Y 2Y 2Y ) K Y K  X

K (4Y 2Y 2Y ) 0

M e

− θ θ − θ θ + +

+ − − + +

+ − − − =

+ θ θ − θ θ + +

+ − − + +

+ − − =

+( )
( ) ( )( )

2 2 s 2 1 3 s 2 1 3

2 2 2 2 u 2 2 2 2 u 2

J C (2 ) K (2 )

M X Y e sin Y X e cos

θ θθ + θ −θ −θ + θ −θ −θ

+ − − θ θ + − θ θ

2 u 2M ge sin 0+ θ =    (4) 
 
Two end masses before the rotor drop 
The motion of these masses (M1 and M3) is governed by 
the magnetic bearing stiffness (Km) and damping (Cm) 
forces.  The response is also affected by the motion of 
the central mass M2 through the stiffness and damping 
of the shaft.  The equations for mass M1 and M3 in x, y 
and θ can be written as follows: 

1 1 s 1 2 3 m 1 s 1 2 3

m 1 1

1 1 s 1 2 3 m 1 s 1 2 3

m 1

M X C (X 2X X ) C X K (X 2X X )
K X M g 0

M Y C (Y 2Y Y ) C Y K (Y 2Y Y )
K Y 0

+ − + + + − +

+ − =

+ − + + + − +
+ =

1 1 s 1 2 s 1 2J C ( ) K ( ) 0θ θθ + θ − θ + θ − θ =  (5) 

3 3 s 3 2 1 m 3 s 3 2 1

m 3 3

3 3 s 3 2 1 m 3 s 3 2 1

m 3

M X C (X 2X X ) C X K (X 2X X )
K X M g 0

M Y C (Y 2Y Y ) C Y K (Y 2Y Y )
K Y 0

+ − + + + − +

+ − =

+ − + + + − +

+ =

3 3 s 3 2 s 3 2J C ( ) K ( ) 0θ θθ + θ − θ + θ − θ =  (6) 
 
Contact force and deflection equation 
When the magnetic bearing is inactive, the rotor drop 
analysis starts to account for the impact of the shaft 
inside the available clearance of the auxiliary bearing.  
Figure 5 shows the contact forces which arise at the 
auxiliary bearing impact points.  The contact forces are 
the normal contact force (Fn) and the tangential contact 
force (Ft). They depend on the Hertzian contact stiffness 
(Kc) and damping (Cc) coefficients as well as the 
amount of elastic deflection (δ) of the inner race of the 
bearings. 
 
 

    
FIGURE 5: Representation of the end mass inside the 

back-up bearing 

 n c cF K C= δ + δ , t nF F= μ  (8) 
 The deflection is calculated by subtracting the 
radial motion from the clearance. The angular position 
of the penetration is ψ 

 2 2
o i 2 2

XX YYX Y (R R )    
X Y

+
δ = + − − δ =

+

 1 Ytan
X

−ψ =    (9) 
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Central mass after the rotor drop 
The equation of motion for the central mass will involve 
the contact forces between the shaft and the inner 
surface of the journal bearing. It is important to mention 
that the clearance of the auxiliary bearing is less than 
the clearance of the journal bearing. The main reason is 
to try to protect the babbitt surface on the inner surface 
of the journal. If the journal bearing remains in action 
the contact force N2 will be zero.  The equation will be 
formed from equation (4). The normal force for the 
central mass is N2 and its angular position is ψ2 as 
derived in equation (8) and (9). The radius of the shaft 
inside the journal bearing is R2. 
 

( )

( )

2
2 2 2 2 2 2 xx 2 xy 2

s 2 1 3 xx 2 xy 2

s 2 1 3 2 2 2 2 2

2
2 2 2 2 2 2 yy 2 yx 2

s 2 1 3 yy 2 yx 2

s 2

M X e sin e co s C X C  Y

C (4X 2X 2X ) K X K  Y

K (4X 2X 2X ) N (cos( )- sin( ))+M g

M Y e cos e sin C Y C  X

C (4Y 2Y 2Y ) K Y K  X

K (4Y

− θ θ − θ θ + +

+ − − + +

+ − − = − ψ μ ψ

+ θ θ − θ θ + + +

− − + +

+ 1 3 2 2 2 22Y 2Y ) N (sin( )+ cos( ))− − = − ψ μ ψ

 

 

( )
( ) ( )( )

2
2 2 2 s 2 1 3 s 2 1 3

2 2 2 2 2 2 2 2 2

M e J C (2 ) K (2 )

M X Y e sin Y X e cos  

θ θ+ θ + θ − θ − θ + θ − θ − θ

+ − − θ θ + − θ θ

2 2 2 2 2M ge sin N R+ θ = −μ    (10) 
 
Two end masses after the rotor drop 
After the drop, the two end masses start to bump inside 
the inner race of the auxiliary bearing. The same form 
of the contact forces are added to the two end masses 
equations (8) and (9).  

1 1 s 1 2 3 s 1 2 3

m 1 m 1 1 1 1 1 1

1 1 s 1 2 3 s 1 2 3

m 1 m 1 1 1 1 1

1 1 s 1 2 s 1 2 1 1 1

M X C (X 2X X ) K (X 2X X )

C X K X N (cos( ) sin( )) M g

M Y C (Y 2Y Y ) K (Y 2Y Y )

C Y K Y N (sin( ) cos( ))

J C ( ) K ( ) N R  θ θ

+ − + + − +

+ + = − ψ − μ ψ +

+ − + + − +

+ + = − ψ + μ ψ

θ + θ − θ + θ − θ = − μ
     (11) 
 

3 3 s 3 2 1 s 3 2 1

m 3 m 3 3 3 3 3

3 3 s 3 2 1 s 3 2 1 3

m 3 m 3 3 3 3

3 3 s 3 2 s 3 2 3 3 3

M X C (X 2X X ) K (X 2X X )

C X K X N (cos( ) sin( ))

M Y C (Y 2Y Y ) K (Y 2Y Y )

C Y K Y N (sin( ) cos( ))

J C ( ) K ( ) N R  θ θ

+ − + + − +

+ + = − ψ − μ ψ

+ − + + − +

+ + = − ψ + μ ψ

θ + θ − θ + θ − θ = − μ
     (12) 
 

Two auxiliary bearing masses after the rotor drop 
 The motion of the auxiliary bearing masses (M4 and 
M5) is governed by the stiffness and damping forces of 
the auxiliary bearing as well as the contact forces 
generated from the impact of the shaft with the inner 
race of the bearing. The auxiliary bearing mass (M4) 
under the end mass (M1) 

4 4 b 4 1 b 4 1

1 1 1 1

4 4 b 4 1 b 4 1

1 1 1 1

4 4 b 4 1 1 1

M X C (X X ) K (X X )
N (cos( ) sin( ))

M Y C (Y Y ) K (Y Y )  
N (sin( ) cos( ))

J C N R  θ

+ − + −

= ψ − μ ψ

+ − + −

= ψ + μ ψ

θ + θ = μ

 (13) 

 
The auxiliary bearing mass (M5) under the end mass 
(M3)  

5 5 b 5 3 b 5 3

3 3 3 3

M X C (X X ) K (X X )
N (cos( ) sin( ))

+ − + −

= ψ −μ ψ
 

5 5 b 5 3 b 5 3

3 1 3 3

5 5 b 5 3 3 3

M Y C (Y Y ) K (Y Y )  
N (sin( ) cos( ))

J C N R  θ

+ − + −

= ψ + μ ψ

θ + θ = μ

 (14) 

 
Normal force calculation for each mass  
The normal force was derived in equation (8) as a 
function of the elastic deflection (9). The calculation of 
the contact force for the central mass is as follows 

2 c 2 c 2N K C= δ + δ  t 2 2 2F N= μ  (15) 

2 2 2 2 2 2
2 2 2 2c 2 2 2

2 2

X X Y Y
X Y (R R )        

X Y

+
δ = + − − δ =

+

1 2
2

2

Y
tan

X
−ψ =     (16) 

The R2c is the journal bearing radius at the central mass 
location. It is equal to the rotor diameter R2 added to the 
radial clearance of the journal bearing. The normal 
force of the two auxiliary bearings depends on the 
motion of the end masses as well as the motion of the 
bearing as follows: 
 

1 c 1 c 1N K C= δ + δ  t1 1 1F N= μ  (17) 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2 2
1 1 4 1 4 1b 1

1 4 1 4 1 4 1 4 1 4 1 4
1 2 2

1 4 1 4

X X Y Y (R R )   

X X X X X X Y Y Y Y Y Y

X X Y Y

δ = − + − − −

− + − + − + −
δ =

− + −

1 1 4
1

1 4

Y Y
tan

X X
− −

ψ =
−

   (18) 
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3 c 3 c 3N K C= δ + δ  t3 3 3F N= μ  (19) 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2 2
3 3 5 3 5 3b 3

3 5 1 5 3 5 3 5 3 5 3 5
3 2 2

3 5 3 5

X X Y Y (R R )   

X X X X X X Y Y Y Y Y Y

X X Y Y

δ = − + − − −

− + − + − + −
δ =

− + −

1 3 5
3

3 5

Y Y
tan

X X
− −

ψ =
−

   (20) 

Here R1c and R3c are the radii of the inner race of the 
auxiliary bearing.  They are equal to the radial clearance 
of the auxiliary bearing added to the rotor diameter R1 
and R3 respectively. 
 
Coefficient of friction 
The tangential contact force has always the opposite 
direction of the moving surface velocity.  The direction 
of the force will be determined from the relative 
velocity of the two contact surfaces.   Inside the 
auxiliary bearing, the two relative velocities are the 
angular velocity of the shaft and the angular velocity of 
the inner race of the auxiliary bearing.  The static 
sliding coefficient of friction is μs and the sliding 
coefficient of friction is μd. 

1shaft 1 1 1 1 1 1

4brg 1c 4 4 1 4 1

V =R X sin( ) Y cos( )

V =R -X sin( )+Y cos( )

θ − ψ + ψ

θ ψ ψ

d 1shaft 4brg

1 s 1shaft 4brg

d 1shaft 4brg

V V
V V
V V

⎧ μ >
⎪

μ = μ =⎨
⎪−μ <⎩

   (21) 

3shaft 3 3 3 3 3 3

5brg 3c 5 5 3 5 3

V =R X sin( ) Y cos( )

V =R -X sin( )+Y cos( )

θ − ψ + ψ

θ ψ ψ

d 3shaft 5brg

3 s 3shaft 5brg

d 3shaft 5brg

V V
V V
V V

⎧ μ >
⎪

μ = μ =⎨
⎪−μ <⎩

  (22) 

 
 
ANALYSIS STEPS 
The analysis strategy is to predict the motion and the 
behavior of the motor following the loss of the magnetic 
support system. The analysis is devised into two 
subsequent steps as shown in figure 6. The first is to 
study the steady state response of the system under 
normal operating condition: the magnetic support is 
active and the unbalance force is applied. The second 
part starts with the loss of the magnetic bearing and the 
start of the transient analysis of the rotor drop. The 
analysis assumes that the magnetic bearing is not 
effective after the drop.  The first part of the analysis is 

governed by equations (4), (5) and (6) which describe 
the three degrees of freedom of each of the three rotor 
masses (9 degrees of freedom). The system of equation 
can be described in a state space representation using 
the position and velocity of each degree of freedom. 
The total number of state variables S is 18. The initial 
conditions for the states are zero. 
 
 

 
FIGURE 6: Flow chart of the transient analysis of the 

rotor drop 
 

The second part involves the two auxiliary bearing 
masses as well as the three rotor masses. At each step, 
the deflection for each mass is calculated and the 
normal forces and their direction are determined as in 
equations (16-20). The transient response after the drop 
is governed by 15 equations for the three degrees of 
freedom of the five masses. The system of equation can 
be also described in a state space representation using 
the position and velocity of each degree of freedom. 
The total number of state variables is 30. 
 
 
TRANSIENT ANALYSIS  
The rotor drop analysis is conducted on the fluid film 
test rig rotor configuration. The rotor data is 
summarized in Table 1. The transient analysis is 
conducted over a period of 0.3 second. The initial time 
is zero and the rotor drop takes place at 0.1 sec. The 
time of the drop was selected so that the rotor reached 
its steady state position while subject to the unbalance 
force. The time step was 1x10-5 second. 
The analysis is conducted for two cases: The first case 
assumes that the journal bearing remains active after the 
drop and hence helped support the rotor during the drop. 
The second is a worse case scenario where the drop 
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occurs without any support from the journal bearing. 
The second case is studied in the case where the journal 
bearing coefficients are greatly reduced due to the large 
movement of the shaft. 
 
 

Table 1: Fluid film test rig data  
Central Mass M2 14.9 Kg 
End Mass Weight M1&3 14.9 Kg 
Mass moment of Inertia J2 0.149 kg.m2 
Mass moment of Inertia J1&3 0.083 Kg.m2 
Eccentricity eu 5.73x10-7 m 
Aux. bearing Mass M4&5 2 Kg 
Aux. bearing moment of Inertia J4&5 0.01 Kg.m2 
Bearing stiffness Kxx 2.17x109 N/m 
Bearing stiffness Kxy 2.31x106 N/m 
Bearing stiffness Kyx 13.86x106 N/m 
Bearing stiffness Kyy 2.17x109 N/m 
Bearing Damping Cxx 803x103 N.s/m 
Bearing Damping Cxy 2276 N.s/m 
Bearing Damping Cyx -210 N.s/m 
Bearing Damping Cyy 803x103 N.s/m 
Shaft Stiffness Ks 114x106 N/m 
Shaft torsional stiffness Ksθ 1x106 N.m/rad 
Shaft structural damping Cs 1646.9 N.s/m 
Shaft torsional damping Csθ 15.56 N.s/m 
Aux. bearing stiffness Kb 1x107-5x107 N/m 
Aux. bearing damping Cb 200-2000 N.s/m 
Aux. bearing torsional damping  Cbθ 1x10-4 N.s/m 
Contact stiffness Kc 5x108 N/m 
Contact damping Cc 200 N/m 
Magnetic bearing stiffness Km 1.75x107 N/m 
Magnetic bearing damping Cm 1000 N.s/m 
Running speed 22000 rpm 
Friction coefficient 0.2 
Static Friction coefficient 0.5 
Aux. bearing coefficient of friction 0.0015 
 
First case with journal bearing 
 Figure 7 illustrates the behavior of the rotor during the 
drop while the journal bearing is active: The first row 
represents the response of mass M1, the second row 
represents the response of mass M2 and the third row 
represents the response of mass M3. The columns 
represent the progress in time. The first column is the 
response before the drop (0 sec to 0.1 sec). 
The second column represents the response after the 
drop from 0.1 to 0.3 sec. The lines in purple represent 
the response of the previous step in time. In the first 
column of plots in Figure 7, the masses start from rest 

and reach the steady state response of the system due to 
the unbalance force on the central mass M2. The 
response is oscillatory due to the harmonic behavior of 
the force. 
 

 
FIGURE 7: Transient response of the rotor using the 

first set of journal bearing coefficient 
 
In the second column of plots, the rotor is dropped and 
the magnetic support properties are set to zero. The 
rotor is now solely supported by the central journal 
bearing. The response of the rotor is damped due to the 
large damping coefficient of the journal bearing {O 
(1x105N.s/m)} and the stiffness coefficient {O 
(1x109N/m)}. The effective damping ratio is less than 
one and the system behaves as an underdamped free 
vibration system.  
 
Second case without journal bearing 
In this case, the rotor losses its magnetic supports as 
well as the journal bearing support. Two level of 
stiffness were tested for auxiliary bearing at two 
damping levels. The first is a less stiff auxiliary bearing 
set with stiffness Kb (1x107 N/m) and the second 
represents a stiffer bearing set with stiffness Kb (5x107 
N/m). The two levels of bearing damping are 200 
and1000 N.s/m respectively. 
 
Auxiliary bearing stiffness (Kb=1x107 N/m).  The first 
column in Figure 8 illustrates the steady state response 
of the rotor for the unbalance force. In the first time 
interval, the journal bearing and the magnetic bearings 
support the rotor.  At the end of the first interval, the 
rotor is dropped (at 0.1 sec). Both supports are lost 
(their stiffness and damping coefficients are set to zero) 
and the rotor is only supported by the auxiliary bearing 
through the impact with its inner race. 
In the second column, the circle represents the clearance 
space between the rotor and the inner race of the 
auxiliary bearing for M1 and M3. For the central mass 
M2, the circle represents the clearance between the rotor 
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and the pads of the journal bearing. The initial 
conditions for the drop are the steady state response in 
the first column. The rotor is dropped as seen vertically 
downward to hit the inner races. 
 
 

 
FIGURE 8: Transient response of the rotor for auxiliary 
bearing stiffness 107 N/m and damping 200 N.s/m 
 
The rotor starts to bounce in the bottom half of the 
auxiliary bearing. Due to the low damping in this case, 
we can see that the bouncing distance is relatively large. 
However, after 0.2 sec, the rotor starts to rest relatively 
quietly on the bottom of inner race. The fourth column 
shows the contact force. During the first 0.1 sec, there is 
no contact between the rotor and inner race. At the rotor 
drop, the force starts with an impulse of the impact of 
the rotor in the inner race. The contact force is 
approximately 80 kN for each impact. This magnitude 
depends on the weight of the rotor as well as the 
dynamic forces. During the rotor bounce, the normal 
contact force starts dropping to zero until the next 
impact which takes it back near the 80 kN level. 
Figure 9 illustrates the rotor response with a higher level 
of damping in the auxiliary bearing (1000 N.s/m). Since 
the steady state response is the same as the previous 
case, the initial conditions for the drop is exactly the 
same.   
In the second column, the bouncing response is less than 
Figure 8 due to the presence of the higher damping 
level. The rotor center motion crosses the circle. The 
crossing represents the amount of deflection of the inner 
race. Due to the presence of the damping, the rotor 
remains in contact with the auxiliary bearing for a 
longer period of time. From 0.2 -0.3 sec, the rotor starts 
to move as one body in a backward whirl motion. The 
backward whirl can be seen in the motion of the three 
masses. The contact force remains almost constant at 80 
kN during the backward whirl. The inner race deflection 
and the backward whirl are two signs of probable 

damage that will take place in the real test rig at this 
stiffness level. 
 
 

 
FIGURE 9: Transient response of the rotor for auxiliary 
bearing stiffness 1x107 N/m and damping 1000 N.s/m 

 
Auxiliary bearing stiffness (Kb=5x107 N/m).  Figure 
10 and 11 describe the transient response of the rotor 
with a stiffener bearing for two damping levels. The 
rows correspond to the response of M1, M2 and M3 
respectively. The steady state response in the first 
column is again exactly the same responses in the case 
of Kb 1x107 N/m. The bounce of the rotor from the 
impact is higher than the softer case. The frequency of 
the impact is higher due to the higher stiffness of the 
auxiliary bearing. Due to the small amount of damping, 
the impact response is rapid and the rotor doesn’t 
remain in touch with the inner race. 
 
 

 
FIGURE 10: Transient response of the rotor for auxiliary 
bearing stiffness 5x107 N/m and damping 200 N.s/m 
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It is important to mention that the motion of the masses 
M1 and M3 are different due to the randomness of the 
motion of the drop after the impact. This difference is 
the reason for taking the motion of the two masses into 
account. The motion in this case has a conical shape 
where M1 is bouncing inside the clearance while M3 
represents a pivot on the other end of the rotor. For 
these two cases, the motion was damped out in 0.2 
seconds. The backward whirl was not depicted in the 
stiff auxiliary bearing (Kb= 5x107 N/m) for the two 
damping levels.  
 
 

 
FIGURE 11: Transient response of the rotor for auxiliary 
bearing stiffness 5x107 N/m and damping 1000 N.s/m 
 
CONCLUSIONS 
The rotor drop analysis is presented for the fluid film 
test rig for an AMB failure. The three-mass model was 
able to capture the transient motion of the two ends 
masses. From Figures (10)-(11), the motion of these two 
masses were found to be different due to the 
randomness of the response after the first impact. The 
Hertzian contact model was implemented at the impact 
point. The normal and tangential contact forces were 
functions of the Hertzian contact stiffness, contact 
damping and the coefficient of friction.  
 
 
 
 
 
 
 
 
 
 
 

The journal bearing was able to provide a central 
support to the rotor and prevent impact. The behavior of 
the rotor depends on the damping as well as the stiffness 
of the journal bearing.   
An additional analysis was conducted in the case where 
the journal bearing fails to support the shaft. The low 
stiffness auxiliary bearing allows a higher response at 
the auxiliary bearing at the rotor drop than the stiff 
auxiliary bearings. A backward whirl was identified in 
the presence of high damping (1000 N.s/m). As a 
solution for the identified backward whirl, the case of a 
higher stiffness auxiliary bearing was analyzed. The 
rotor in this case bounces on the bottom half of the 
inner race. The response is damped out in 0.2 sec.  The 
analysis without the journal bearing was able to predict 
the magnitude of the contact forces during the rotor 
drop. The magnitude of the normal contact forces 
remains in the same range of 80 kN. The suitable 
auxiliary bearing design is a pair of rolling element 
bearing at each side of the rotor. The pair will provide a 
high stiffness for the support which will prevent the 
backward whirl and reduce the amount of bouncing 
during the rotor drop.  
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