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ABSTRACT 
This paper presents a new modeling method and a 
control system design procedure for a flexible rotor with 
many elastic modes by using active magnetic bearings. 
The purpose of our research is to rotate the rotor for 
passing through critical speeds caused by flexible 
modes. To achieve this, it is necessary to control motion 
and vibration of the flexible rotor simultaneously. The 
new modeling method named as Extended Reduced 
Order Physical Model is presented to express its motion 
and vibration uniformly. By using this model, a PID 
(Proportional-Integral-Derivative) controller to levitate 
the rotor and a LQ (Linear-Quadratic) controller to 
suppress its vibration are designed. 
 
 
1. INTRODUCTION 
Active magnetic bearings (AMB) systems have been 
applied to various machines such as grinding machines, 
vacuum pumps and energy storage flywheel system. 
Because AMB enables to support rotor without friction 
it is widely applied to high-speed rotors. However, as 
the rotation speed increases, more elastic modes of rotor 
and precession that is caused by gyroscopic effect 
appears. In this paper, a modeling technique for a 
flexible rotor-AMB system that can express vibration of 
elastic modes and gyroscopic effect is presented. 
Moreover, a control method applied to the model is also 
presented. The model is designed in order to describe an 
exact multi-degree-of-freedom dynamics of the flexible 
rotor-AMB system [1]. Utilizing the obtained model, we 
designed a feedback control system that combines both 
PID and LQ controllers. PID controller is used to 
levitate the rotor and stabilize the rigid modes of the 
rotor, whereas LQ control with state feedback loop is 
adapted to control many elastic modes of vibration. One 
of the authors had applied these modeling and control 
method to a flexible rotor [2]. We have been developing 
thinner, longer, heavier and more flexible rotor system. 

In this paper, the modelling and control method is 
applied to the rotor to evaluate their effectives. 
 
 
2. CONTROL OBJECT AND ITS DYNAMIC 
CHARACTERISTICS 
Figure 1 show the AMB device and a schematic 
diagram of the flexible rotor used as the control object 
in this research. Mass of this rotor weights about 10 kg. 
This rotor is levitated in thrust axis by using a PD 
(Proportional-Derivative) controller that is 
independently designed to LQ controller. And the 
coupling among thrust axis and other axes is ignored. 
Therefore, the main part of this research is to consider 
dynamics of the flexible rotor in radial direction. 

Figure 2 shows the vibration mode shapes and their 
natural frequencies in free boundary condition obtained 
by using FEM. In this study, we aim to control rigid 
modes, 1st elastic mode, and 2nd elastic mode. 
 
 

 
Fig.1 Flexible Rotor-AMB System 
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1st mode        2nd mode         3rd mode 

163.7[Hz]        391.4[Hz]        691.6[Hz] 
Fig.2 Modal Shapes Obtained by FEM 

 
 
3. EXTENDED REDUCED ORDER PHYSICAL 
MODELING METHOD 
3.1 Design Procedure of Extended Reduced Order 
Physical Model 
In order to simulate and control flexible structures, 
authors have already developed an effective modelling 
method called “Extended Reduced Order Physical 
Modeling Method (EROM)” which can be treated in 
multi-body dynamics [3]. 

EROM is very useful for dynamic simulations and 
controller design of flexible structures because it is 
possible to treat three-dimensional non-linear systems 
and to express any distributed parameter system as a 
lumped parameter system. EROM can be applied not 
only to magnetic bearing, but also robotic arms, car 
bodies, etc. Using this method, good results have been 
obtained in our laboratory. Therefore, this model can be 
applied to wide range of fields. 

In the model, flexible structure is composed of two 
kinds of rigid bodies and springs. One type of rigid 
body is named as “reference rigid body” that expresses 
motion, while the other type of rigid body named as 
“rigid bodies element” express vibration. The procedure 
of the extended reduced order physical modelling 
method is as follows, 
 1. Analyzes the mode shapes and identify the modal 
 masses of each modes. 
 2. Choose the number of modes to be controlled and 
 determine the positions of the rigid body elements. 
 3. Identify the mass matrix of the rigid body  
 elements. 
 4. Identify the mass matrix of the reference rigid 
 body. 
 5. Identify the stiffness matrix of the rigid body 
 elements. 

 6. Construct the equations of motion. 
In this study, the chosen mode number is determined to 
4, two elastic modes to two directions(x, y axis 
direction). Then, number of the rigid body element is 
selected to 9. It is decided according to constraints on 
modal masses of rigid body element written as below. 
 1. Agreement of kinetic energy in each vibration 
 mode. 
 2. Keep orthogonally to other vibration modes 
 3. Conservation of momentum in each vibration 
 mode 
 4. Conservation of angular momentum in each 
 vibration mode 
Representing these constraints Matrix equation of 
constraints becomes written as below. 
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 [ ]31 31diag=ξ I I ,  [ ]T31 1 1 1=I  
 Φ  : Modal matrix obtained by vibration mode 
 shapes 
 OBM : Mass matrix of rigid body elements 
 B′J  : Moment of inertia matrix of rigid body 
 elements 
 n  : Number of reference modes 
The mass matrix of the reference rigid body OAM  and 
the moment of inertia matrix A′J  are calculated to be 
equal to real mass realM  and real moment of inertia 

real′J  of the system in total. This is the reason why the 
model can express motion and vibration simultaneously. 
 T

OA real m OB m= −M M η M η  (2) 

 ( )T T T
A real m m m Gm OB Gm m′ ′ ′= − +J J η J η η r M r η  (3) 

 [ ] ( )T
m m 3= ×η I I  

The stiffness matrix k  is obtained by the following 
equation. 
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 T 2 1− −=k Φ ω µΦ  (4) 
Where ω denotes a matrix including natural frequency 
of each modes. 

Compared with modal masses of rigid body element 
that is a part of expressing vibration modes, mass of 
reference rigid body is designed so that the total mass of 
the model possess the same value with real mass of 
structure. Figure 3 shows a model of our rotor obtained 
by applying the EROM concept.  

Next, the relation between the model and real rotor 
is shown by using this figure. Rigid body labelled as A 
denotes reference rigid body. Rigid bodies labelled as 
B1~B9 denote rigid body elements. B2 and B6 are 
subjected to control force in the radial direction. B1 and 
B7 are chosen as the sensing points in the radial 
displacement. The center of gravity of the rotor is 
located on B6. B9 denotes the bottom of the rotor. Each 
rigid body has 6 degrees of freedom (6DOF). Each rigid 
body elements and reference rigid body are connected 
by springs each other. Parameters of the rigid body 
elements and the reference rigid body are determined by 
the procedure mentioned above. The identified 
parameters are shown in Table 1. 
 
 

 
Fig. 3 Extended Reduced Order Physical Model 

 
 
 
 
 
 
 
 

Table 1: Parameters of Rigid Body Elements and 
Reference Rigid Body 

  Distance Mass Moment of 

Element from 
center [kg] Inertia [kgm2] 

  [mm]   X-axis Y-axis 
B1 0.3767 0.00213 -0.06028 -0.06028
B2 0.3349 0.00678 0.061724 0.061724
B3 0.23721 0.01529 0.20591 0.20591
B4 0.1116 0.00346 0.098048 0.098048
B5 0 -0.0002 0.051546 0.051546
B6 -0.02791 0.00054 0.071626 0.071626
B7 -0.05581 0.00177 0.080004 0.080004
B8 -0.09767 0.00469 0.039069 0.039069
B9 -0.2233 0.00239 0.009597 0.009597
A 0 10.9777 -0.21497 -0.21497

 
 
3.2 Equations of Motion 
In this section, we conduct equation of motion by using  
“the constraint addition method”[4]. First, the equations 
of motion of the reference rigid body A with no 
constraint are given like this. 
 OA OA OA=M V F  (5) 

 A OA OA A OA OA′ ′ ′ ′ ′ ′+ =J Ω Ω J Ω N  (6) 
 OAV  : Velocity of reference rigid body,  
 OAF  : External force on reference rigid body 
 OA′Ω  : Angular speed on reference rigid body, 
 OA′N  : External torque on reference rigid body 
Similarly, the equations of motion of the rigid body 
elements (B1~B9) without constraints are given like this 
 OB OB OB=M V F  (7) 
 B OB OB B OB OB′ ′ ′ ′ ′ ′+ =J Ω Ω J Ω N  (8) 
Each symbols denote same means in (7) and (8). Suffix 
“B” means the value of rigid body element 
B1~B9.Equations (5) ~ (8) denote equations of motion 
of the rotor without restraint. The generalized velocity H 
without constraints is given by 
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V
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H
V
Ω

 (9) 

The mass matrix include the moment of inertia HM  
and external force matrix HF  are given by 
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Equations (9) ~ (11) can also be written as 
 H H=M H F  (12) 
Second, when h  represents the modal velocity, the 
equation of motion with constraints will be derived. The 
generalized velocity S  in the system with constraints 
is given by 

 
OA

OA

 
 
 ′=  
   

V
S Ω

h
 (13) 

By using the constraint addition method[4], the equation 
of motion of the rigid body model is derived. The 
derived equations of motions by using the constraint 
addition method are as follows. 
 S S=M S F  (14) 
 S S= +H H S H  (15) 

 S T H
S S=M H M H  (16) 

 S T H H S S
S

dd
dt dt

     = − +      

HH
F H F M S  (17) 

Where, 
 SM  : Generalized mass matrix constraints matrix 
 SF  : Generalized force vector constraints matrix 
 HM  : Unconstraint mass matrix 
 H  : Unconstraint generalized velocity 
 HF  : Unconstraint force vector 
 
3.3 State Space Representation 
The equation of motion derived in the foregoing section 
is non-linear. In order to design the linear control system, 
it is necessary to linearize the equation of motion and to 
create a linearized state space model. Linearized 
equation (14) can be written as follows.  
 S S

0δ δ=M S F  (18) 
Where the matrix with subscript 0 denotes linearized 
matrix around the equilibrium position. The relationship 
between generalized velocity S and generalized 
coordinate Q  with a derivative with respect to time is 
 =Q LS  (19) 
Equation (14) and (19) can be expressed in matrix form 
as 

 ( ) 1S Sd
dt

−      =        

S M F
Q LS

 (20) 

This matrix equation is a first-order ordinary differential 
equation. From the above equation, the state-space form 
can be obtained as follows. 
 c c c c= +X A X B U  (21) 
 c c c=Y C X  (22) 
When state valuable cX  is 

 c

 
 =   

S
X

Q
 (23) 

System matrix cA  can be derived as the partial 
derivative of the right hand side of Eq. (20) with respect 
to state valuable cX  [5] 
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Also, the control matrix cB  can be derived as the 
partial derivative of the right hand side of Eq.(20) with 
respect to input U . 

 ( )
eq

eq

1S S

c

−

=
=

 ∂  =  ∂    Q Q

S S

M FB
U S

 (25) 

 
eq

eq

OB2
c

OB7 =

=

 ∂  =  ∂   Q Q

S S

R
C

RX
 (26) 

eqQ  and eqS are the equilibrium positions of 
generalized coordinates and generalized velocitys, 
respectively. 
 
 
4. NUMERICAL ANALYSIS OF ROTOR 
DYNAMICS 
4.1 Frequency Response 
Simulated frequency responses are shown in Fig.4 and 5. 
The resonance peaks appeared around 35Hz and 85Hz 
are of two rigid modes (parallel mode and conical 
mode), besides the peaks around 160Hz and 390Hz are 
1st and 2nd elastic modes respectively. The gyroscopic 
effect is clearly appeared in Fig.5 though it did not 
appear in Fig.4. Figure 5 shows frequency response of 
the model with rotational speed at 30 Hz. It is 
recognized that the gyroscopic effect act to split the 
natural frequency of each mode into two natural 
frequencies. 
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Fig.4 Frequency Response of the Model at Rotational 

Speed 0[Hz] 
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Fig.5 Frequency Response of the Model at Rotational 

Speed 30[Hz] 
 
 
4.2 Campbell Diagram 
In order to demonstrate the usefulness of extended 
reduced order physical model that can treat the 
gyroscopic effect of the flexible rotor, variation of 
natural frequencies depending on rotational speed is 
examined by calculation. Figure 6 shows the 
relationship between rotational speed and natural 
frequency of the rotor used in this study. Natural 
frequencies of two elastic modes located at 160 Hz and 
390 Hz under 0 rpm are split into two frequencies as the 
rotational speed increases. 
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Fig.6 Campbell Diagram 

 
 
5. CONTORL SYSTEM DESIGN 
5.1 PID Control 
 

 
Fig.7 Block Diagram 

 
 
Since the rotor-AMB system is essentially unstable and 
can not be levitated without control, PID control is used 
to stabilize the system. The two rigid modes (parallel 
and conical) are also controlled. Figure 7 shows the 
associated block diagram. 

The transfer function of PID controller is designed 
as follows, 

 1 d 1 2 d 2

PID d 1 d 2

T s 1 T s 1i
u T s 1 T s 1

α α  + +   =       + +  
 (27) 

It can be written in the state space representation as 
below, 
 h h h h hu= +X A X B  (28) 
 h h h h hY D u= +C X  (29) 
Where, 

 h

e
e
 
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X , h PIDu u= , Y i=  
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The parameter and frequency response of the designed 
PID controller are shown as follows. 
 .1 5 77511299392671α =  
 .2 3 22442479388603α =  
 d 1T 8e 003= −  
 d 2T 8e 003= −  
 
 

 
Fig.8 Frequency Response of PID Controller 

 
 
5.2 Filtered LQ Control Combined with PID 
Figure 9 shows a block diagram of the system combined 
PID controller with LQ controller. The feedback gain 
vectors, PIDK  is tuning and LQK  is obtained by 
applying LQ control law to the augmented system.  

Derived non-linear equation (14) is linearized to 
obtain state equation. The state equation and output 
equation combined with PID control system are shown 

as follows. 
 = +X AX BU  (30) 
 =Y CX  (31) 
Here, 
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Where, the state variable is defined as follows. 

{ }T
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{
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h x1 x1 x1 y1 y1 y1
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e e e e e e

e e e e e e
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 f lq
 =   K K K  

Thus, the state equation of the augment system is 
written as follows. 
 c c c c c= +X A X B U  (32) 
 c c c=Y C X  (33) 
Here, 

 H
c

S S

 
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A 0
A

B A
 

 [ ]c H=B B 0  

 [ ]c S=C 0 C  

 
Fig.9 Block Diagram of Augmented System
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6. COMPUTER SIMULATION 
In this chapter, simulation results by using only PID 
controller or controller combining PID with LQ are 
shown in Fig.10, 11 and 12. These frequency responses 
are calculated in case that the rotor is at critical speeds 
obtained by Fig.6, the external disturbance is input on 
rigid body element B2 and displacement output is 
observed at B1. It is clearly shown that the rigid modes 
are well suppressed when only PID controller is used, 
while, the elastic modes are not suppressed. This is 
because PID controller is used merely for controlling 
the rigid modes in this study. Whereas, the controller 
combined PID with LQ is acted well to control the 1st 
and 2nd elastic modes. Especially, split two natural 
frequencies caused by gyroscopic effect are well 
controlled. The robustness of state feedback control 
realized such effect. 
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Fig.10 Simulation Results of Frequency Response at 

130(Hz) 
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Fig.11 Simulation Results of Frequency Response at 

210(Hz) 
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Fig.12 Simulation Results of Frequency Response at 

320(Hz) 
 
 
7. EXPERIMENTAL RESULTS OF LEVITATION 
IN THE THRUST DIRECTION 
In this paper, rotor is levitated in thrust axis by using a 
PD controller that is independently designed to LQ 
controller. And thrust AMB controller is independent 
with radial AMB controller. In this chapter, 
experimental results of levitation in the thrust direction 
by using PD controller are shown. Figure 13 shows a 
block diagram of thrust AMB system. 
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Fig. 13 Block Diagram of Thrust AMB System 

 
 
The transfer function of PD controller is, 
 th

th

i
D Pu k s k= +  (34) 

 Dk  : D-gain 
 Pk  : P-gain 
Experimental results of levitation in the thrust direction 
by using PD controller are shown in Fig.14 and Fig.15. 
Simulation results are also presented for comparison.  
The simulation model is one degree-of-freedom system. 
So the experimental and simulation results show a little 
difference. However, the basic characteristics agree well. 
We plan to design control system in a radial direction 
according to these results. 
 
 

 
Fig. 14 Frequency Response of Thrust Direction by 

using PD controller 
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Fig. 15 Time History Response of Thrust Direction by 

using PD controller 

8. CONCLUSIONS 
In this paper, a controller design procedure for a flexible 
rotor-AMB system has been investigated. The proposed 
modeling technique named as Extended reduced order 
physical model was applied to obtain the multi- degree 
of freedom model of the flexible rotor-AMB system. A 
controller is designed by using controller combined PID 
with LQ control were introduced to stabilize the flexible 
rotor and to control flexible bending vibration. 
Computer simulations are carried out and the controller 
obtained by using the presented procedure achieved 
good control performance. 
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