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ABSTRACT 
A significant impediment to low cost 

commercial deployment of magnetic bearing 
systems in many applications is the engineering 
process of tuning.  In applications where the 
dynamics of the platform contribute significantly to 
overall system dynamics, AMB tuning in the vendor 
factory may not be sufficient to provide satisfactory 
performance once installed.  In this case, on-site 
retuning is done “by hand” by a skilled engineer and 
the associated cost can be substantial.  In addition, 
later alterations in the plant, the process, or the 
internal machine dynamics may dictate retuning of 
the AMB controller, again requiring costly 
engineering intervention. In this paper, we examine 
the general characteristics of the plant that govern 
the requirements of an automated tuning process. 
The AMB machine tool spindle will serve as an 
example to illustrate results and outline the approach 
to the robust control model validation problem. 
 
INTRODUCTION 

For many reasons, the idea of automatic tuning 
of the AMB controller is a recurring theme in the 
AMB literature and offers an important commercial 
opportunity. Despite this, relatively little actual 
progress has been reported. There are many possible 
causes for this lack of progress, but the central 
culprit is most likely the combination of the fact that 
the open loop AMB plant is unstable (this means 
that many established auto-tuning methods won’t 
work at all) and that many problems of interest 
exhibit fairly complex dynamics – right half-plane 
transmission zeros, gyroscopic-induced sensitivity to 
rotor speed, and so forth. 

The general characteristics of the plant that 
govern the requirements of an automated tuning will 
be followed with a discussion of mu-synthesis, 
which we believe is the most viable technique for 
automated controller synthesis [1-3], presenting 
some recent experimental results on a machine tool 
spindle [4-5]. We then review the literature on 
system identification in the context of the mu-

synthesis control problem, detailing the structure 
required of a viable identifier, which elements are 
solved and which remain open.  This discussion 
leads naturally into the problem of ascertaining 
whether a given model and associated uncertainty 
description (the components of mu-synthesis) 
properly covers measured dynamics of the plant: we 
outline a computational scheme for establishing this 
critical property, a necessary and sufficient 
condition for plant identification.  We conclude with 
a look to the future: what are the real prospects for 
commercially robust auto-tuning for AMB systems 
and what technical challenges remain to attain this 
valuable goal.  
 
MU-SYNTHESIS 
 Magnetic bearing systems for rotating machinery 
represent an archetypal challenge for multi-input, 
multi-output (MIMO) control: they inherently 
involve multiple interacting control mechanisms and 
many conflicting performance objectives. As such, 
they would appear to be a perfect application of 
formal MIMO control design techniques such as µ-
synthesis, which addresses the stability robustness in 
a systematic design procedure.  

 At the most conceptual level, the AMB system 
may be described by the block diagram in which the 
control inputs u are signals delivered to the power 
amplifiers, the measurements y are signals received 
from position sensors, the loads w are forces or 
electrical noise acting on the system, and 
performance measures z are those signals that the 
engineer will monitor in assessing adequate 
management of the loads w. Essential to μ-synthesis 
is an assumption that mapping G is linear time 
invariant (LTI). Also, it is common to model the 
controller as LTI for the bulk of the design and 
analysis work. As such, the controller may be 
described by a matrix transfer function H and the 
closed loop system indicated in Fig. 3 maps non-
dimensional exogenous signals  to non-
dimensional performance measures  via 
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( ) ( )ˆẑ s Pw s=                               (1) 
 
where P is the weighted closed loop performance 
function: 

( ) 11
z zw zu yu ywP W G G H I G H G W

−− ⎡= + −⎢⎣ w
⎤
⎥⎦

    (2)                                         

 

 
 

FIGURE 1: AMB system with controller closed 
loop. 

 
 When the plant model satisfies these 
assumptions (LTI) and the performance objective is 
to ensure that the peak gain of P is less than some 
target threshold, γ, then the problem is one of H∞ 
control and synthesis is accomplished by the sole 
additional step of delivering the weighted model to 
the machinery of H∞ synthesis.   
 However, in reality, there is an additional 
consideration in this controller design: the model 
provided by G may not exactly match the actual 
plant.  That is, the plant Gp may be better described 
by G0 in combination with some specific perturba-
tion, Δ.  This means that the model structure of Fig. 
1 should be amended as in Fig. 2 to include this 
perturbation.   
 

 
FIGURE 2: Model with uncertainty. 

 
It is assumed that the actual values of the elements 
of are not known (if they were, then we would 
simply modify G0 accordingly) but that they are 
bounded so that we require that  where we 
know the structure of Δ and can bound its elements.  
In this case, the control problem becomes: ensure 
that the closed loop system is stable for all 

Δ∈Δ

Δ∈Δ  
and that |P|∞< γ, again for all .  In this case, 
the problem becomes one of μ-synthesis.  As in the 
previous case, the solution strategy is to simply 
specify the nominal plant G0, the target gain bound 
γ, and the uncertainty set Δ.  When these three 

elements are submitted to the computational 
machinery of μ-synthesis, the required controller is 
produced automatically, if one can be formulated to 
meet the specifications. 

Δ∈Δ

 
 
 
OPEN-LOOP TRANSFER FUNCTION 
MEASUREMENT  

Consider the control loop shown in Figure 3. 
Assume that we can simultaneously measure the full 
set of signals ( )sy  and ( )su . In this case, 

 
( ) ( ) ( )s s s=y P u                         (3) 

 
but it is not possible to extract the elements of ( )sP

1...i n

 
because there is insufficient information. However, 
suppose that we construct a series of tests =  
for which  
 

 
 

FIGURE 3: AMB control with all components 
indicated. 

 

( ) ( ) ( ) ( ) ( )1
,ˆi i u is s s s e−

= −⎡ ⎤⎣ ⎦y P I C P v s

u i

       (4a) 
and 

( ) ( ) ( ) ( )1
,ˆi is s s e s−

= −⎡ ⎤⎣ ⎦u I C P v            (4b) 

in which is a vector of zeros except for the ith 
element, which is 1.0. 

ˆ iv

In this case, we may construct the matrices 
( ) ( ) ( ) (1 2 n )s s s s≡ ⎡ ⎤⎣ ⎦Y y y y          (5a) 

and 
( ) ( ) ( )1 2 n ( )s s s s≡ ⎡ ⎤⎣ ⎦U u u u         (5b) 

 
for which it is trivially established that  
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( ) ( ) ( ) ( ) ( )1
,u is s s s diag e− ⎡ ⎤= −⎡ ⎤⎣ ⎦ ⎣ ⎦Y P I C P s    (6) 

 
Assuming then, that the inverses of ( )sU  and 

 exist, one can construct  ( ),u idiag e s⎡⎣ ⎤⎦

( ) ( ) ( ) ( )11
,u is diag e s s s

−− ⎡ ⎤= −⎡ ⎤⎣ ⎦⎣ ⎦U I C P    (7) 
so that 

( ) ( ) (1 )s s− ≡Y U P s                  (8) 
 

Obviously, the choices of  and number of 
exemplars, n, must be made in order to ensure 
invertibility of these matrices (or, rather, to 
minimize their condition numbers). Further, all 
elements of each column of 

,u ie

( )sY  and ( )sU  must 
be acquired simultaneously in order to ensure that 

 is identical for every element of each column. 
The various columns, must of course, be measured 
independently. Hence, n measurements must be 
made where n is at least equal to the dimension of u. 

,u ie

 
AMB MACHINING SPINDLE 

The platform for this study is an AMB 
supported machine tool spindle with the cross-
section shown in Figure 4. The spindle was 
originally developed by Revolve Magnetic Bearings, 
a subsidiary of SKF, Inc., and adapted to permit 
control using a dSPACE digital controller. The 
spindle rotor is supported by two radial bearings and 
one thrust bearing. The maximum static radial load 
capacities are approximately 1400 and 600 N for the 
front and rear bearings, respectively, and the 
maximum axial capacity for thrust bearing is 500 N. 
The spindle reaches a rotational speed of 50,000 rpm 
at 10 kW. The AC motor acts on the rotor between 
the thrust and rear radial bearing [4-5].  
 

 
 

FIGURE 4: Cross section of AMB machining 
spindle without tool holder. 

 
The rotor is modeled using finite Timoshenko beam 
elements to produce rotor mass (M), gyroscopic (G), 
and stiffness (K) matrices of fairly high dimension: 
 

x

y
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where  ω is the rotor speed. The original finite 
element model of this rotor had 64 mass stations in 
each plane. This model was transformed to modal 
using modal matrix (Φ): 

0
,  ,  

0
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 The standard modal truncation was then applied 
wherein it was assumed that the modes at 
frequencies beyond some cutoff have negligible 
effects. In this case modal truncation retained only 
four modes in each plane: two rigid body modes and 
two flexible modes. At this point, modal damping 
ratio were selected and inserted in the model.  
 
OPEN-LOOP TRANSFER FUNCTIONS: 
EXPERIMENTAL RESULTS 

The controller was implemented using dSPACE 
based on differential control, with 10 output 
channels required and provided by the two D/A 
boards [3, 4]. The hardware consisted of the DS1005 
PPC Board featuring the PowerPC 750GX running 
at 1GHz. The controller sampling time was 10 kHz. 
To measure the open loop transfer function in a 
MIMO system like an AMB supported rotor, some 
care must be taken in the signal processing. In this 
case, the system has four inputs (amplifier 
perturbations for the x- and y- axes of each bearing 
plane) and four outputs (sensor signals for the x- and 
y- axes of each sensing plane). Thus, the open loop 
transfer function has the form: 

{ } ( ){ }G s=y u                             (9) 
in which  G(s) is a 4×4 matrix of transfer functions. 
 To measure G(s), we conducted four 
experiments in which each of the input signals  
is perturbed individually. That is, for the first 
experiment, we inject a sinusoidal perturbation to 

, for the second, to  and so on. For each 
conducted experiment, a vector of all inputs to the 
plant and a vector of all outputs from the plant were 
recorded. That is, at each frequency, four sets of 
Fourier coefficients were measured for the four 
amplifier inputs and four sensor outputs. 

,u ie

,1ue ,2ue

 In this manner, the signals are expected to be 
related by 

( ) ( ) ( )i iY G j U iω ω ω=                    (10) 
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and the transfer function may be obtain by the 
simple arithmetic 

( ) ( ) ( )1
i iG j U Y iω ω ω−=                  (11) 

 
If the perturbations for the four experiments have 
been chosen well, then the required inverse 

( )1
iU ω−  will exist for all of the test frequencies. 

 Figure 5 shows a typical measurement of the 
open loop transfer function: in this case, from 
excitation of the amplifiers driving the tool end 
bearing to the output of the tool end position sensor.  
Notice, in particular, that the magnitude levels to a 
constant value at low frequency: this is because the 
magnetic stiffness of the magnetic bearing 
asymptotically approaches a constant value at low 
frequency.  If the rotor were truly “free-free”, then 
the magnitude would converge at low frequency to a 
constant slope of -2. The asymptotic gain is the ratio 

a i s xk k k k , so it can be used as an independent 
measure of kx if the other parameters are known 
(usually, kx is the most difficult parameter to 
identify); here  is the composite gain of the D/A 
and power amplifier,  is the actuator gain, 

ak

ik sk  is 
the composite gain of sensor and A/D, and xk  is the 
magnetic stiffness. 
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FIGURE 5: Open loop transfer function G(1,1). 

 
 

In Figure 6, the region between 800 Hz and 
2100 Hz has been expanded to permit inspection of 
the bending modes of the rotor.  First, note that the 
first and second bending modes are clearly identified 
at roughly 1100 Hz and 1950 Hz.  Second, note that 
there is a transmission zero immediately following 
the first bending mode and another preceding the 
second bending mode.  The interpretation of this is 
that the first bending mode has a node between the 
sensor and actuator used in this measurement while 
the second bending mode does not [6]. This 
observation is crucial in validating a computational 
model of the rotor. 
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FIGURE 6: A detail view of Figure 5. 

 
Figure 7 presents the same detail but for the 

right end of the rotor.  In this case, the bending 
modes clearly occur at the same frequencies as for 
the left end of the rotor but the zeros are quite 
different.  Although the zeros are not as easily 
identified as for the left end data (roughly 950 Hz 
and 1750 Hz), it is clear that both zeros precede the 
associated poles which indicates that neither 
bending mode has a node between this 
sensor/actuator pair. 
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FIGURE 7: Detail of the magnitude of transfer 
function G(3,3). 

 
The immediate importance of these 

observations to the problem of constructing an 
adequate model for mu-synthesis of the controller is 
that the finite element model of the rotor, in 
conjunction with electrical models of the 
surrounding components has these modes at the 
right frequencies, but the transmission zeros are not 
correct: for the left end (G11), the model indicates a 
zero prior to the first pole, rather than after it. From 
a modal point of view, this amounts to an apparently 
rather minor error in the mode shape, but if this 
discrepancy between model and measurement is 
represented as an uncertainty for the purposes of μ-
synthesis, then the magnitude of this uncertainty 
may be very large: indeed, if the uncertainty is 
modeled as additive to the plant, it will be extremely 
large in the immediate vicinity of this mode. Figure 
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8 presents the error between the measured G11 and 
the modeled G11, which is a lower bound to the 
additive uncertainty required for μ-synthesis. 
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FIGURE 8: The error between the model and the 

measured plant transfer function. 
 

When using any controller synthesis tool, there is 
always the possibility that the plant model used for 
controller synthesis will differ from the dynamics of 
the physical plant and that, as a result, the 
performance or relative stability of the combination 
of controller and physical plant will be poor relative 
to the design goals. This concern is a primary basis 
for introducing design objectives such as gain and 
phase margin: to permit deviation between model 
and physical plant without suffering excessive loss 
of relative stability or performance. This issue is 
accentuated when using automated synthesis tools 
like μ- or H∞, and is the primary reason for the 
emergence of μ- from its progenitor, H∞. An 
important uncertainty analysis problem is associated 
with the output sensitivity function. Output 
sensitivity is specifically used in the ISO-14839-3 
[7] standard as a measure of AMB system 
robustness, requiring that the peak gain of the 
diagonal elements of the output sensitivity function 
is less than about 4 for commercial systems. 

To use μ-synthesis, the analyst needs three 
components: 
1. an analytic model of the physical plant 
2. a set of performance objectives written in terms 

of acceptable gains from various input channels 
to various output channels 

3. a description of the potential sources of 
deviation between the physical plant and its 
analytic model. 
 
What μ-synthesis provides, in turn, is a 

controller which is guaranteed to stabilize any 
physical plant covered by the combination of the 
analytic model and the uncertainty description. The 
term “cover” means, essentially, that if you were to 
generate all possible Bode plots characterizing the 
analytic model in combination with all possible 
values of the uncertainty, then the actual physical 

plant’s Bode plot lies within the resulting gain/phase 
envelope. 

More specifically, if the plant and associated 
uncertainty are defined by 
 

( ) ( )( )0; , :    uG s G sΔ = Δ Δ ΔF ∈  
 
then this model covers an actual plant Gp(s) if and 
only if there exists some  such that pΔ ∈Δ

( ) ( ); 0pG s G s
∞

Δ − = . The symbol denotes 

the upper linear fractional transformation (LFT) of 
the first argument by the second argument. It is a 
general notation for any feedback connection of the 
nominal plant, G0(s), with the uncertainty, Δ, and 
permits uncertainty descriptions of a very broad 
range including simple additive uncertainty, 
multiplicative uncertainty, or nearly any kind of 
structured uncertainty such as parametric, modal, 
and so forth. The distinction between Δ and Δ is that 
is a specific instance of an uncertainty operator that 
lives in the bounded class specified by Δ. Generally, 
specification of Δ is a matter of describing its block 
structure (which elements of the operator are zero, 
which are equal one to the other, which are real-
valued) and providing a bound for the blocks in 
terms of maximum singular value, potentially as a 
function of frequency. 

( ),⋅ ⋅uF

The importance of this notion that the 
components G0 and Δ must cover the actual plant Gp 
cannot be over-emphasized: if they do not, then the 
resulting controller may stabilize the physical 
combination, but it is equally likely that it will not. 
Our experience in developing controllers for the 
machine tool spindle described in this paper using μ-
synthesis has been that our model has not covered 
the actual plant (primarily because of the misplaced 
zero prior to the first flexible mode in G11) and the 
result is that many of the controllers we have 
synthesized have not stabilized the system.  

Surprisingly, this problem of determining 
whether or not a given combination of G0 and Δ 
covers a physical plant has received very little 
attention in the open literature. Part of the reason for 
this is fundamental: as elaborated by Newlin and 
Smith [8], it is actually (and perhaps obviously) not 
possible to determine whether (G0,Δ) covers Gp for, 
at  the least, the simple reason that Gp is never 
known precisely (hence the uncertainty 
description!). However, it is possible to determine 
that (G0,Δ) does not cover Gp, a piece of information 
of nearly the same utility. So the approach 
advocated in [8] is to determine the smallest Δ 
which cannot be shown not to cover Gp and then 
assume that, at least with some measure of 
confidence, that the resulting pair (G0,Δ) does cover 
Gp. Obviously, this approach is far from perfect, but 
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at least it screens out uncertainty models which can 
be demonstrated not to cover. 

Computing the condition examined in [8] is 
nontrivial and there is no software in the public 
domain to carry out this computation. The authors 
are presently working to produce a validated 
implementation of the algorithm described in [8] and 
will make this available to the larger technical 
community when this work is completed. 

Reflecting on the three components needed to 
properly manage μ-synthesis, it should be apparent 
that the first component (analytic model) has been 
examined exhaustively in the literature. Models are, 
of course, not perfect, but can certainly exhibit very 
high levels of sophistication and concomitant 
fidelity. The second component is important only to 
ensuring suitable performance: the act of specifying 
“suitable performance” is entirely equivalent to 
producing these performance objectives so it is 
nearly axiomatic that producing this component is 
completely tractable. 

The problematic component is obviously the 
uncertainty description. The literature on robust 
analysis and control provides many suggestions for 
structuring the uncertainty description, but 
ultimately, the hard requirement remains that (G0,Δ) 
must cover Gp. It may be tempting to simply be 
conservative: choose a very large Δ to ensure that 
the cover requirement is met. However, the closed 
loop system always presents a trade-off between 
performance and robustness. Hence, choosing an 
unnecessarily large Δ will generally imply 
significantly worse closed loop system performance 
than can ideally be obtained. Indeed, an excessively 
large class Δ will frequently lead to the result that no 
controller can be found that stabilizes this 
excessively uncertain plant description. 

This problem is further confounded by the fact 
that the uncertainty description is not unique. A 
good choice of the structure of the interaction 
between the plant and its uncertainty may lead to 
cover with an uncertainty of very modest bound, 
resulting in easy controller synthesis and excellent 
closed loop performance. By contrast, some 
alternately structured description of the same level 
of plant uncertainty may require a very large 
uncertainty bound and result in very poor closed 
loop behavior. 

To illustrate this, consider the zero location 
problem illustrated by the machine tool spindle 
discussed above. If the uncertainty is treated as 
essentially unstructured so that 
 

( ) ( )0G s G s= + Δ  
 

then a lower bound on one element of Δ is described 
by Figure 8. To use this in a synthesis model, we 

must find a reasonably low ordered transfer function 
Gd(s) whose gain mimics this additive error and then 
describe Δ as the product of the deterministic 
description Gd and some entirely unknown but 
bounded complex number :  1δ δ < . To cast the 
result in a form amenable to μ-synthesis, an 
augmented plant is constructed which contains both 
G0 and Gd, with Gd scaled by δ. The more closely Gd 
cleaves to the data of Figure 8, the less conservative 
the description becomes, but such tuning of Gd 
generally raises its order, resulting in a high order 
nominal augmented plant, which high order is 
inherited by the synthesized controller. In addition, 
because this uncertainty is now attributed, in some 
sense, to the sensing or actuation of the plant, it is a 
non-physical description of the cause of the 
uncertainty and, generally, is conservative (δ is 
larger than it needs to be). 
 Conceptually, this uncertainty description does, 
in fact, cover the actual plant Gp, but it also covers 
many other plants which are entirely infeasible from 
the underlying physics of the problem. Since the 
synthesized controller must stabilize the entire 
implied class of possible plants, including those 
which are infeasible, it must be unnecessarily 
conservative. 
 A better approach is to examine the structure of 
the rotor model to determine what might cause the 
displaced transmission zero. Some care must be 
exercised here because it is undesirable to introduce 
a causal attribution which produces uncertainty not 
only in the zero location but also in the associated 
pole location: the pole location is not uncertain, only 
the zero. One relatively simple approach to this is to 
examine the modal description of the rotor and look 
for mode shape perturbations that could shift the 
location of the transmission zero. With a bit of care, 
the uncertainty can then be cast entirely in modal 
coordinates as a mode shape uncertainty with the 
result that the analyst is provided with an 
uncertainty knob that affects only the location of this 
particular transmission zero, leaving the remaining 
significant features of the plant transfer function 
unaffected. By focusing on phenomena with a more 
nearly causal influence on the observed uncertainty, 
the nominal uncertainty model becomes simpler (in 
this case, the uncertainty in modal coordinates 
becomes a simple scalar with no attributed dynamics 
- Gd) and can generally be less conservative. Such an 
apparently deeply embedded uncertainty description 
is readily described using an LFT structure, so it is 
entirely amenable to the base formulation of the μ-
synthesis problem. 
 
CONCLUSIONS 
There is no identification or design problem where 
physical system can be described by a nominal 
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model. Robust control models account for 
perturbations and unknown signals; however, it is 
still a matter of judgment whether or not the model 
is proper to describe the system.  
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