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ABSTRACT 
This work describes the performance improvement of a 
4 poles 1,1 kW split winding bearingless induction 
machine based on a neural rotor flux observer. The 
system control executes simultaneously the vector speed 
control, the radial positioning control and the stator 
winding current control. The neural flux observer 
compensates for parameter variations due to 
temperature changes or due to the rotor magnetic 
saturation. A program developed in the ANSI C 
language executes all the system control. The used DSP 
resources are the Analog/Digital converters, the PWM 
outputs and the parallel and RS-232 serial interfaces, 
which are responsible, respectively, for the DSP 
programming and the data capture through the 
supervisory system. Comparisons with a fixed 
parameter observer validate the proposed method. 
 
 
1. INTRODUCTION 
In comparison with standard machines, bearingless 
machines present as advantages: reduction of space and 
losses, capacity to operate at higher speeds, lower 
maintenance and application in high vacuum, low 
temperature and clean atmospheres [1]. Moreover, the 
split winding bearingless induction machine [2, 3] can 
be constructed with standard Dahlander motors [4] 
representing a great cost reduction. The main problem is 
to guarantee the rotor positioning with an adequate 
speed control strategy. Under other methods, scheduled 
adaptive control [5] and linear quadratic regulators [6] 
have already been tested. In this paper, the premium 

characteristics of field oriented control, neural networks 
and DSP numeric processing speed are combined to 
improve the positioning of a laboratory prototype split 
winding bearingless induction machine. The machine 
flux model is revised in chapter 2, the machine structure 
is presented in chapter 3, the digital system 
implementation in chapter 4. The laboratory test 
machine will be described in chapter 5. Finally, 
experimental results will be presented in chapter 6, 
followed by the conclusions in chapter 7. 

 
 

2. THE FLUX MODEL 
The implemented system is based on the vector control 
technique that makes the induction machine control 
similar to the direct-current machine control [7, 8].  
The rotor flux referential was chosen to be used in the 
estimation of the variables related to the rotor. This 
choice simplifies significantly the digital system 
implementation. The equations of the rotor flux states 
are the following:  
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where: 
 

imR(t) - Magnetizing current. 
iSd(t) - Field current.  
iSq(t) - Torque current.  
ρ(t)                               - Rotor flux position.   
mM(t) - Electric torque. 
np - Par poles number. 
ωmec(t) - Rotor mechanical speed. 
TR - Rotor time constant. 
RR - Rotor resistance. 
LR - Rotor inductance. 
Ls. - Stator inductance. 
σ - Leakage factor. 
 

Although simple, this model has nonlinear 
characteristics and depends directly of the machine 
parameters. This dependence generates some 
performance limitations, mainly when these parameters 
are not well known or change by the influence of 
external agents as, for example, the temperature or the 
flux saturation [7,8]. Thus, if some parametric variation 
occurs, the rotor flux estimation will present an error 
that can influence the global system performance.  
To compensate for the limitations imposed by observers 
based on models with fixed parameters, this 
workproposes a flux neural observer composed of two 
multi layer feedfoward neural networks [9]. These 
neural networks execute, simultaneously, the rotor flux 
speed estimation and the magnetization current 
estimation which defines, respectively, the rotor flux 
position (after the integration of the flux speed) and the 
rotor flux magnitude. 

 
 

3. THE SPLIT WINDING BEARINGLESS 
MACHINE 

The winding arrangement of the bearingless induction 
machine is roughly presented in Figure 1. The currents 
applied to each winding are given by: 

 
iA1=iA + ΔiA (6) 

iA2=iA – ΔiA (7) 

iB1=iB + ΔiB (8) 

iB2=iB – ΔiB (9) 

iC1=iC + ΔiC (10)

iC2=iC – ΔiC (11) 

 
The components iA, iB, iC give the rotational torque and 
are established with the field oriented control method. 
The incremental components ΔiA, ΔiB, ΔiC are 
responsible for the positioning and are calculated by two 
PD controllers and convenient coordinate 
transformation. 
 

 
 
 

FIGURE 1: The basic idea of a split winding 
bearingless induction machine. 

 
 
4. THE DIGITAL CONTROL SYSTEM 

IMPLEMENTATION 
Figure 2 depicts the block diagram of the complete 
control system. In this system, the vector speed and 
radial positioning controllers are guided by the rotor 
flux observer. The six resultant reference components 
shown in equations 6-11 are applied to the current 
controller.  
The rotor flux observer, necessary for the field oriented 
control, is given by two Perceptrons multi layer neural 
networks (Figure 3). 
The networks training was achieved with the off-line 
back propagation algorithm available at the Matlab 
Neural Network toolbox. After the training, the neural 
network weights were normalized for the fix-point 
operation of the DSP LF2812 [10]. 
The conventional flux observer was also implemented 
to provide several comparisons with the neural observer 
under the same conditions.   
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FIGURE 2: The complete control system. 
 
 

                 
                           
                                    (a)                                                                                              (b) 

 
FIGURE 3:  Neural networks for the rotor flux velocity (a) and intensity (b) estimation. 

 
 

5. THE LABORATORY PROTOTYPE 
Figure 4 shows a picture of the laboratory prototype of 
1.1kW.  
 

 
 

FIGURE 4: The laboratory prototype. 

The machine parameters were measured in 
laboratory, and its values are: nominal speed ωnom = 
1800 rpm, nominal voltage Vnom=220V, nominal current 
Inom=1A, stator resistance RS=4.5853Ω, rotor resistance 
RR=32.0894Ω, stator and rotor inductance 
LS=LR=459.6mH, magnetizing inductance 
LM=278.6mH, par pole number np=2, inertia moment 
J=6.06.10-3 kg.m2  and leakage factor σ=0.1. 
 
 
6. EXPERIMENTAL RESULTS 

The performance of the system described in the 
previous section was compared with that obtained with 
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an inverse model flux observer [6] under different test 
conditions. The tested conditions were the step, the 
ramp  and the disturbance responses.  
 
6.1. Step Response 

Initially, with the bearingless motor at standstill 
(x=0.0mm, y=-0.5mm), the speed reference was 
changed to 1800 rpm. The step response is presented in 
Figure 5. The positioning obtained with the neural 
observer improved significantly. The current 
components iSd and iSq also show lower oscillations as 
can be seen in Figure 6. 
 

 
 

FIGURE 5:  Step responses of the mechanical speed 
and X and Y positions. 

 

 
 

FIGURE 6: Field current (iSd), magnetizing current 
(imR) and torque current (iSq) to the step change. 

 
These current components (iSd and iSq) are directly 
responsible for the electric torque generation and one of 
the main characteristics of this machine type is the 
strong dependence of the radial positioning in relation to 
the electric torque, in such a way that, if the electric 
torque is oscillatory, there will be a significant 
deterioration of the radial positioning control. 
Analyzing the positioning diagram shown in Figure 7, it 
is possible to confirm that the oscillatory electric torque 

generated by the control system under the conventional 
observer orientation results in an oscillatory radial 
positioning and the X-Y positioning errors in the steady 
state are larger than the radial positioning errors guided 
by the neural observer. 
  

 
 

FIGURE 7: Radial positioning diagrams with the 
conventional and neural flux observers to step changes. 

 
6.2. Ramp Response 
Tests with ramp references were also conducted. Figure 
8 shows that the mechanical speed and the X-Y 
positions of the system operating with the neural 
observer is faster than the same tests to the system 
guided by the conventional flux observer errors. 

 

 
 

FIGURE 8: Ramp responses of the mechanical speed 
and X and Y positions. 

 
The current components iSd and iSq shown in Figure 9 
maintain the oscillations presented in the graphs of 
Figure 6 for the system guided by the conventional 
observer in relation to the system oriented by the neural 
observer. 
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FIGURE 9: Field current (iSd), magnetizing current 
(imR) and torque current (iSq) to the ramp input. 

  
Diagrams shown in Figure 10 confirm the smother 
behavior and the smaller steady state error of the radial 
positioning for the system guided by the neural 
observer. 
 

 
 

FIGURE 10:  Radial positioning diagrams with the 
conventional and neural flux observers to the ramp 

input. 
 
 

6.3. Disturbance Response 
To observe the system behavior under different 
conditions, tests with slow ramp references and 
instantaneous load application were accomplished. 
The mechanical speed and X-Y position responses 
presented in Figure 11 show that the applied 
instantaneous load for the system guided by the neural 
observer was very close to the load applied during the 
conventional observer operation. 

 
 

FIGURE 11: Ramp responses of the mechanical speed 
and X and Y positions submitted to an instantaneous 

load. 
 
The graphs of the mechanical speed ωmec presented in 
Figure 11 show that the speed return to the steady state 
is a little faster when the system is oriented by the 
neural observer. 
For the radial positioning, it is observed that the X and 
Y responses during the operation of the neural observer 
follow the references Xref = 0 mm and Yref = 0 mm with 
smaller errors than the system operating with the 
conventional observer to the same load conditions.  
The Y responses are the most affected by the load 
application for both observers operation. However, the 
return to the steady state for the operation with the 
neural observer is faster than the response provided by 
the system guided by the conventional observer.   
The currents iSd, imR and iSq presented in Figure 12 show 
a behavior similar to that already seen in the previous 
tests (Figures 6 and 9), where the conventional observer 
generated oscillatory responses.   

 

 
 

FIGURE 12: Field current (iSd), magnetizing current 
(imR) and torque current (iSd) to the ramp input submitted 

to an instantaneous load. 
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In the radial positioning diagrams presented in Figure 
13, it is observed that in spite of the deterioration at the 
X and Y responses due to the instantaneous load 
application, the rotor axis stays closer to the position 
references Xref = 0 mm and Yref = 0 mm when the system 
is guided by the neural observer. 

 

 
 

FIGURE 13: Radial positioning diagrams with the 
conventional and neural flux observers to the ramp 

changes submitted to an instantaneous load. 
 
In agreement with the presented results it was possible 
to prove that the speed control behavior guided by both 
observers is very close. However, the neural observer 
improved significantly the radial positioning control 
performance.  

 
 

7. CONCLUSION 
In the split winding bearingless motor, the rotor 
positioning and the torque production tasks must be 
fulfilled with currents flowing trough the same three 
phase windings. The experimental results of this paper 
show that a neural network flux observer gives a precise 
knowledge of the system. Therefore, the positioning can 
be achieved more easily.  

Better results are expected with a motor in the 
vertical position. In this case, an independent axial 
bearing will support the rotor weight and the motor 
winding currents can be left just for the torque 
production and for small radial positioning efforts. 
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