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ABSTRACT
Vibration characteristic of a rotor supported by a PID
controlled magnetic bearing is investigated. The differ-
ential equation of motion is derived with nonlinearities
of the magnetic force for the gap, the current, and the
characteristics of a current amplifier together with the
decrement of magnetic force due to surface eddy current
caused by rotation of the rotor. The influence of the ro-
tational speed on the magnetic force is approximated by
a fractional function and the coefficients are determined
by experiments. By this approximation, the resonance
curves for a major critical speed by the shooting method
have good agreements with the experimental results.

INTRODUCTION
Recently, a lot of active magnetic bearings came into use
in various fields. As a number of the magnetic bear-
ings increase, the cases encountering failures or acci-
dents, such as a large vibration by an unbalance due to
some damage of a rotor, should also increase. Although a
magnetic bearing has nonlinear properties in itself, most
of them are controlled with linear control theory by lin-
earization at equilibrium position. However, in the case
above mentioned, the vibration phenomena should be
considered with nonlinearities. There are many studies
on the nonlinearity of magnetic bearings[1]-[9]. How-
ever, in these studies, the control parameters are not al-
ways applicable for real systems, for their aims are the-
oretical analyses such as bifurcation analysis. On the
other hand, the authors have been comparing the theo-
retical analysis and the experimental results, considering
the nonlinearity of the magnetic force. First, the static
stiffness of a magnetic bearing was expressed as sum
of polynomial components in polar coordinate system,
which has regular shapes[10]. Then the effect of time
delay of control force on the dynamic property of rotor

system is clarified[11]. Later, some decrement of mag-
netic force that can’t be explained by mere a time delay
is found. We considered that this decrement is caused by
the lag of magnetic flux due to eddy current on the ro-
tor surface with rotation. We ascribe the decrement to
the change of electromagnet constant. In this paper, we
identify the relationship between the constant and rota-
tional speed from the experimental results and verify the
influence of the decrement by comparing the experimen-
tal resonance curve and the simulated one.

THEORETICAL ANALYSIS
Equation of motion
Figure 1 shows an analytical model for an experimental
apparatus. A shaft is pivoted at its right hand. A disk is
attached at right end of the shaft to verify the gyro effect.
The shaft is suspended horizontally by a magnetic bear-
ing with solid cylindrical rotor at its left end. Generally,
laminating silicon steel is used in this part to suppress the
eddy current. However, to a varying degree, it’s impos-
sible to suppress the eddy current completely especially
in high-speed rotation. Therefore it is important to take
an eddy current by rotation into account. The origin O of
coordinate system is the geometrical center of magnetic
bearing, andz-axis is set to the direction to the pivot P.
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FIGURE 1: Analytical model
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FIGURE 2: Cross section of magnetic bearing

Figure 2(a) shows the cross section of the magnetic bear-
ing at O. To share the gravitational load to two control
axes, the axesx′ andy′ are set to 45 deg incline from the
vertical axisy. We assume that the push-pull and PID
method is used to each axis independently each other.

To predict the vibration of rotor precisely, some kinds
of unbalances must be considered, because there are in-
evitable errors on alignment of rotor, for example the er-
ror between the geometrical center at sensor position and
that at magnetic bearing position. We consider the inter-
sections of the O-x′y′ plane and the straight lines origi-
nating the pivot P. As shown in Figure 2 (b), we define
the intersection of the line though the geometrical center
of rotor at the sensor position as S, that of the geomet-
rical center of rotor at the magnetic bearing as M, that
of the gravitational center of rotor as E, and that of the
principal axis of inertia as Q. Let the inclination of the
shaft (6 OPS represented by OS in Figure 2(b)) to beθ ,
the dynamic unbalance (6 SPQ, represented by SQ) to be
τ, and the angle corresponding the static unbalance (SE)
to bee. We define the combination of the dynamic and
static unbalance as the equivalent unbalanceeτ (SN) as
follows.

eτ =
√

(Ip− I)2 +meτ lG(Ip− I)cosα +(melG)2 · · · · · (1)

whereIp, I , mare the polar moment of inertia, the mo-
ment of inertia about gravitational center G, and the total
mass of the rotor respectively,α is the phase difference
betweene andτ ( 6 ESQ),lG is the interval of the pivot P
and the gravitational center G. Let the initial phase angle
of eτ is zero and the projectile angles ofθ to the O-x′zand
O-y′z plane to beθx andθy respectively. The equation of
motion of the rotor is derived as

(I +mlG
2)θ̈x + Ipωθ̇y =

−Mθx +eτ ω2cosωt−WxlG
(I +mlG

2)θ̈y− Ipωθ̇x =
−Mθy +eτ ω2sinωt−WylG





· (2)

whereWxlG, WylG are thex′ and y′ components of the
moment due to gravitational force.Mθx andMθy are the
restoring moments by the magnetic bearing. In this sec-

tion, we consider the ideal case, in which no eddy current
and no time lag of magnetic flux exist. After some cal-
culations, the restoring moments can be represented as
follows.

Mθx = lmk

[{
Ib(1−wx)+ ix

H + lm(θx +emcos(ωt +βm))

}2

−
{

Ib(1+wx)− ix
H− lm(θx +emcos(ωt +βm))

}2
]

Mθy = lmk

[{
Ib(1−wy)+ iy

H + lm(θy +emsin(ωt +βm))

}2

−
{

Ib(1+wy)− iy
H− lm(θy +emsin(ωt +βm))

}2
]





(3)

wherelm is the interval of the pivot P and the geometri-
cal center of the magnetic bearing O. The load ratiowx,
wy are defined aswx = WxlG/(W0lm), wy = WylG/(W0lm),
whereW0 = k(2Ib/H)2, H is the gap of the magnetic bear-
ing andIb is the average bias current. The control currents
ix, iy are defined as

ix = kpxθx +kdxθ̇x +kix

∫
θxdt

iy = kpyθy +kdyθ̇y +kiy

∫
θydt




· · · · · · · · · · · · · (4)

wherekpx, kpy, kdx, kdy, kix, kiy are the proportional, dif-
ferential, integral gains ofx′ andy′-axis of PID control.
In this paper, the load ratio and the feedback gains are
assumed to be same in both axis, i.e.,wx = wy = w,
kpx = kpy = kp and so on.

Vanishing the unbalanceseτ , em, the differential and
integral gainskd, ki and rotational frequencyω, and lin-
earizing Eq.(2) with Eq.(3) and Eq.(4), we can obtain the
natural frequency of the systemωn as

ωn =
2Ib
H

√
kl2m

I +ml2G

(
kp

Ib
− 1+w2

H

)
. · · · · · · · · · · (5)

We introduce following dimensionless variables and pa-
rameters.

θ ′x =
lm
H

θx, θ ′y =
lm
H

θy, t ′ = ωnt, i′p =
Ip

I +ml2G
, ω ′ =

ω
ωn

,

k′ =
l2mI2

b

ω2
nH3(I +ml2G)

k, k′p =
H
Ib

kp, k′d = ωn
H
Ib

kd

Hereafter, the symbol “′” for dimensionless quantity is
omitted. Using these representations, we get the dimen-
sionless equation of motion as follows.

θ̈x + ipωθ̇y =−Mθx +eτ ω2cosωt− w

kp−w2−1

θ̈y− ipωθ̇x =−Mθy +eτ ω2sinωt− w

kp−w2−1




· (6)
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The dimensionless restoring moments by magnetic bear-
ing Mθx, Mθy in Eq.(6) are represented as follows

Mθx = k

[{
(1−w)+ ix

1+(θx +emcos(ωt +βm))

}2

−
{

(1+w)− ix
1− (θx +emcos(ωt +βm))

}2
]

Mθy = k

[{
(1−w)+ iy

1+(θy +emsin(ωt +βm))

}2

−
{

(1+w)− iy
1− (θy +emsin(ωt +βm))

}2
]





(7)

From the linearized equations of Eq.(6) and Eq.(7), the
equivalent damping ratioζ = 2kkd.

Discussion on magnetic force
To predict the practical case, the property of monopole
current amplifier and the time delay of the control current
must be considered. Additionally, we consider the decre-
ment of magnetic force due to eddy currents by rotation.

The contents of{} in the right hand side of Eq.(7)
represent the dimensionless values correspond to (cur-
rent/gap). These values are proportional to the magnetic
flux density, hence we define these are the dimensionless
magnetic flux densities̄Bmx, B̄px as follows (we discuss
only aboutθx direction here, becauseθy can be regarded
as similar).

B̄mx =
{

max((1−w)+ ix,0)
1+(θx +emcos(ωt +βm))

}
· · · · · · · · (8)

B̄px =
{

max((1+w)− ix,0)
1− (θx +emcos(ωt +βm))

}
· · · · · · · · (9)

The subscriptm represents the gap in the negative axis di-
rection, andp in the positive one. Because the monopole
current amplifier can run the current to only one direc-
tion, if a numerator becomes less than zero, it is forced to
be vanished.

There is a time lag in current in fact, so we assume
this is first-order lag and let the time constant asT. The
dimensionless magnetic flux densities becomes as

Bmx = B̄mx−TḂmx · · · · · · · · · · · · · · · · · · · · · · · · · · (10)

Bpx = B̄px−TḂpx · · · · · · · · · · · · · · · · · · · · · · · · · · (11)

and the moments are represented as

Mθx = k
(
B2

mx−B2
px

) · · · · · · · · · · · · · · · · · · · · · · · · (12)

Similarly, we can obtain

Mθy = k
(
B2

my−B2
py

)
. · · · · · · · · · · · · · · · · · · · · · · · (13)

Figure 3 shows a development of a magnetic bearing
and a rotor surface. The variation of magnetic flux den-
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FIGURE 4: Experimental apparatus

sity at point A on the rotor surface which moves from
left side toward right side with rotation as illustrated. Be-
cause of the existence of eddy currents, the density varies
as the solid curve with the movement of point A. As a re-
sult, the attractive magnetic forces incline as the slanted
arrows. The restoring force of the magnetic bearing is the
sum of the vertical components of theses forces, there-
fore the force decreases as rotational speed increases. We
consider this decrement changes the electromagnetic con-
stantk, and treat it as the function of angular velocity of
rotor k(ω). Assuming the averaged moment and gravita-
tional moment are balanced, we can identifyk(ω) from
the time histories of currents and air gaps in experiment
and the static load at the bearing, because the unbalance
force vanishes by averaging with time. Therefore we get
the balancing equation as follows

lmk(ω)

{(
Ix+

H−x

)2

−
(

Ix−
H +x

)2
}

= WlG · · · (14)

Ix+, Ix− are the electromagnet current andx is the dis-
placement of the rotor. The symbol “” means the av-
eraging with time. In this calculation, the errorem is as-
sumed to be sufficiently smaller than the displacement.

EXPERIMENTAL RESULTS AND SIMULATION
Figure 4 shows the outline of the experimental appara-
tus. A shaft of length about 405 mm is supported by
a self-aligning ball bearing at right hand as pivot and
supported by magnetic bearing at left end. An electro-
magnetic stainless cylindrical rotor of diameter 68 mm
is attached to the shaft. A disk is attached the right end
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TABLE 1: Specification of experimental apparatus

GapH 0.33 mm

Total mass of shaftm 10.04 kg

Position of gravitational centerlG 67.96 mm

Position of magnetic bearinglm 364.5 mm

Polar moment of inertiaIp 0.0525 kgm2

Moment of inertiaI +ml2G 0.415 kgm2

of the shaft. A rotating torque of motor is transmitted
through pulleys and a flexible tube. The PID controller
consists of analog OP amp circuits. Electromagnetic cur-
rents are supplied by monopole current amplifier. The
time histories of shaft displacement and electromagnetic
currents are measured by computer-based measurement
system with sampling frequency 10 kHz and 16-bit res-
olution. The apparatus contains a touch down bearing to
avoid destruction. It limits the amplitude of shaft to about
0.15 mm at magnetic bearing position, 0.5 in dimension-
less representation. Other specifications are listed in Ta-
ble 1.

Effect of rotating speed on magnetic constant
The magnetic force constant is obtained by Eq.(14) with
the experimental time histories of the currents and the
gaps at various rotational speed. Figure 5 shows an ex-
ample of time histories of displacement and currents.

The standard values of control parameters are chosen
as follows. The load ratiow= 0.25, the equivalent damp-
ing ratioζ = 0.5, and the dimensionless integral feedback
gainki = 0.05. These parameters are determined by the
electric circuits of PID controller. Figure 6 shows the
magnetic force constant vs rotational speed. They are for
the dimensionless proportional feedback gainkp =1.8,
2.0, 2.2. The broken curves are the approximation with a
fractional function form as

k(ω) =
kα

kβ +ω
+kγ . · · · · · · · · · · · · · · · · · · · · · · · · (15)

The parameterskα , kβ , kγ can be determined by the least
square method with the experimental data. This figure
shows the dimensionless proportional feedback gainkp
has little influence on the magnetic force coefficientk(ω).
Since the obtained function has a real dimension, we take
it into account to the equation of motion after appropriate
nondimensionalization.

Resonance curve at major critical speed
Figure 7 shows the resonance curves obtained by exper-
iments in the vicinity of major critical speed . The stan-
dard values of the control parameters are the same as
previous section. The symbol “◦” and “•” indicate the
displacement amplitude at magnetic bearing inx′-axis
and y′-axis direction, respectively. In previous papers
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FIGURE 6: Variation of the electromagnetic constant

[10],[11], it is known that the resonance curve of most
magnetic bearing system becomes soft spring type. We
can confirm there’s slightly tendency to be softening of
the resonance curve, though it is unclear because of the
amplitude limitation by a touch down bearing.

In the steady state solution analysis for a nonlinear vi-
bration problem, the harmonic balance method, a kind
of approximation method, is often used[11]. However,
this method needs to express the nonlinearity in polyno-
mial function and its procedure is cumbersome. While
a direct numerical simulation of the equation of motion
without approximation is a time consuming process be-
cause it needs long time to reach steady state solution.
In addition, this has another disadvantage that can’t ob-
tain unstable solution. Therefore we choose the shooting
method[12] to obtain the steady state solution.

In Figure 7, the solid line represents the resonance
curve of proposed method (with consideration of decre-
ment of magnetic force by Eq.(15)), and the broken line
is that of previous method (with electromagnetic force
constantk =Const.). In this calculation, the parameters
eτ = 0.1, em = 0.06, T = 0.7, βm = π/2 are identified by
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FIGURE 7: Resonance Curves

curve fitting. These data are calculated in dimensionless
form first, and later transferred to real dimensions. Com-
paring the experimental data and the simulation results of
proposed method and previous method, we can see the
validity of proposed method.

CONCLUTION
The vibration characteristics of a rotor supported by a
magnetic bearing in the vicinity of major critical speed
are investigated with consideration of the decrement of
the electromagnetic force with the rotational speed. Fol-
lowing results are obtained:
(1) The variation of the electromagnetic force can be

formulated by averaging the calculated instant force from
displacement and current data obtained by experiment.

(2) The resonance curves become soft spring type be-
cause of nonlinearity of magnetic force.
(3) The resonance curves have good agreements with the
experimental results by consideration of the decrement of
the electromagnetic force with the rotational speed.
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