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Abstract— Self–sensing approaches permit active magnetic
bearings to dispense with the usual position sensor and,
instead, extract rotor position information from the voltage
and current histories for the actuator coils. Mirroring the
development of back–emf sensing of angular position in
brushless DC motors, this technology has been a long time
coming (more than 15 years) but has begun to be applied
to commercial products. This review paper describes the
process by which this emergence has occured and outlines
some interesting problems that remain to be solved.

I. INTRODUCTION

After many years of promoting the notion of self–sensing
as a route to a simpler hardware realization for magnetic
bearings, it is now possible to simply quote the December
2005 newsletter of the prominent AMB vendor, S2M:

One of the key issues here, and a major chal-
lenge in terms of innovation, is the selfsensing
bearing technique, where the position sensor and
the bearing actuator form a single component.
This leads to a far more simple design, with no
sensor at all, and fewer connections and related
cabling. The cost reduction for a typical bearing
is substantial, representing a very strong product
differentiation compared to a standard magnetic
bearing.[3]

Self-sensing magnetic bearings are no longer primarily
a research concept but now find commercial application to
turbomolecular pumps [3] and elevator guideways [27].

This paper reviews the state of the art of self–sensing
AMB technology both with regard to technical develop-
ments and also relative to its commercial status. A short
survey of outstanding problems is then provided as a
stimulus to future research in the area. Finally, an extensive
list of references is provided as a partial guide to the
literature on self–sensing AMBs.

II. CONCEPTS

The essential concept of a self–sensing AMB is to elim-
inate the position sensing device normally associated with
active magnetic bearings [64]. The function of this sensor
is then replaced by some form of signal processing which
extracts information about the rotor position from available
actuator current and voltage waveforms, as suggested in
Fig. 1. This is possible because the actuator inductance is
a function of rotor position. Referring to Fig. 2, voltage u
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Fig. 1. Changing from a conventionally sensed AMB configuration to a
self–sensing configuration.
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Fig. 2. A gapped electromagnet: the simplest actuator for an AMB.

applied to the magnet induces magnetic flux Φ according
to

u = N
dΦ
dt

+ iR (1)

in which i is the coil current, R is the coil resistance, and
N is the number of turns on the coil. The first term in (1)
is due to Faraday’s law while the second is due to Ohm’s
law.

Neglecting eddy currents, leakage/fringing effects, and
assuming that the flux density is distributed uniformly
throughout the magnet core and air gap, the flux in the
magnet is related to the coil current by

Φ = A
μ0Ni

2s + �
μr

(2)

in which A is the magnet cross sectional area, s is the
length of the air gap, � is the iron length, and μr is the
relative permeability of the magnet iron.



Combining (1) and (2) produces the relationship
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Clearly, the electrical relationship between the coil voltage
and resulting current is strongly dependent on the length of
the air gap and its rate of change. With perfect knowledge
of the voltage and current, one might reasonably expect to
be able to reconstruct the gap and, hence, determine the
rotor position.

The implication is that it should be possible to construct
an AMB which uses no explicit position sensor. Such an
AMB, which extracts position information from measure-
ments of coil voltage and current, is referred to as self–
sensing.

III. MOTIVATION

There are numerous reasons for wishing to build self–
sensing AMBs, rather than conventional sensor based de-
vices. The most obvious motives relate to the hardware
itself: it is common to monitor coil currents in AMB
systems so converting to self–sensing will eliminate the
cabling, physical sensing device, drive electronics, and
signal processing hardware associated with each discrete
rotor position sensor while replacing them only with sig-
nal processing hardware or software to interpret the coil
current and voltage signals. Potentially, this realizes some
cost savings but, perhaps more importantly, it reduces the
amount of hardware in the machine environment (hot, cold,
wet, vacuum, etc.) and the amount of cabling between
the machine and the drive cabinet. This has substantial
potential to increase reliability of these systems if the
dynamics of the resulting system are not compromised in
the process.

In addition, when the flexibility of the supported rotor
is significant1, then axial displacement of the sensor rel-
ative to the actuator (sensor/actuator noncollocation) can
produce substantial difficulties in stabilizing the system.
In particular, if the node of a flexible mode lies between
an actuator and its associated sensor, then the modal
phase from actuator to sensor is reversed. Of course, the
controller can be designed to take this phase reversal into
account, but small changes in system parameters can easily
displace this modal node so that it is no longer between
the sensor and actuator. In this case, a system which has
been stabilized by carefully accounting for the modal node
location becomes abruptly unstable: the system robustness
is poor. Self–sensing AMBs avoid this problem because
the sensor and actuator devices are identical: self–sensing
AMBs are always collocated.

IV. CONTROL APPROACHES

Although (3) suggests a structure for interpreting coil
current and voltage to determine rotor position, a mathe-
matically simpler approach was developed in [77] which

1Here, “significant” means that the first bending mode of the flexible
rotor is within or at least near to the small signal bandwidth of the sensor
/ amplifier / controller ensemble.
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Fig. 3. Opposed electromagnets: a single axis AMB supporting a mass
M .

first introduced the notion of the self–sensing AMB. This
work examined the problem of control of a single axis
AMB with an opposed pair of magnets, as described in
Fig. 3.

A. State–space solution

The approach developed in [77] and numerous subse-
quent papers focuses on the fundamental controllability and
observability of the bias linearized model of the system in
Fig. 3 in which the coil currents of the opposing magnets
are assumed to be perturbed symmetrically about some
fixed (bias) point. The resulting model is linear with time
invariant coefficients so the implied control problem can
be attacked using the broad array of analysis and synthesis
tools available for such systems.

The controller derived using such a methodology may be
separated into a state estimator acting to generate estimates
of rotor position and velocity followed by a state feedback
controller – the standard LQG controller structure. Thus,
the state estimator functions as a virtual probe, extracting
position and velocity from coil voltage and current.

The problems endemic to this approach are explored in
numerous publications, especially [31], [14], [50], [70] and
their antecedents. The central problem is that the transfer
function from input voltage to output current has a pole–
zero pair in the right half plane and this makes the feedback
stabilization problem very difficult. While such systems can
be levitated and can provide some useful performance, they
are sensitive to parameter drift.

An interesting commercial implementation of an ex-
tension of this approach is described in [27] in which
the problems in robustness are managed by real time re–
estimation of the system parameters most responsible for
the problemmatic sensitivity. Physical experience with this
interesting implementation clearly indicates that this is a
useful direction to pursue.

B. High frequency perturbations

A number of researchers have explored the practical
implications of high frequency perturbations to the coil



Fig. 4. Schematic of the S2M self–sensing scheme [73].

currents in AMB systems, using these perturbations to
estimate the actuator inductance and, hence, the gap length.
An excellent example of this approach is provided by
[19] in which the instantaneous slope of the current is
measured explicitly (using very high rate signal sampling)
and compared to the instantaneous coil voltage to determine
the gap length statically. Some theoretical underpinnings
for this approach are explored in [45], [21], [60] which
attempt to reconcile the theory of [50] with experimental
results such as those obtained by [63].

Some early results, such as [14], [15], [20] used special-
ized signals applied to the coils to provide the self-sensing
function, but more recent work has attempted to exploit
the natural ripple that arises from the normal switching
amplifier function; see, for example, [36], [56].

Generally, the solutions that rely on high frequency
perturbations derive their position estimates either from
direct demodulation of the current ripple or through some
form of parameter estimation process. The former methods
are simpler than the latter but require specific coil voltage
conditioning.

In either case, either a demodulator or a parameter
estimator takes coil voltage and current signals and from
them forms an estimate of gap length. This estimate is then
provided to a typical AMB controller, treating the signal
as a replacement for the position signal normally provided
by a discrete position sensor. Controllers are typically
some variant on PID, but the signals are amenable to
other methods such as H∞ or μ−synthesis derived MIMO
controllers.

Experimental results presented by numerous researchers
for high frequency perturbation based self-sensing sys-
tems show good performance and strong potential for
commercial application. The method employed by S2M
is, interestingly, of the type advocated in [14] and is
depicted schematically in Fig. 4. In [3], the performance
of this system is reported as completely satisfactory for
turbomolecular pump application and plans to apply a
similar scheme to “light” turbomachinery are reported.

V. PROBLEMS

Despite the emergence of real commercial applications
of self-sensing AMB technology, there remain a number of
problems that should continue to stimulate academic and
industrial research.

A. Ripple Amplitude

A key result presented in [21], [60] is that the robustness
of self–sensed AMB systems, regardless of the signal
processing method employed, hinges on the amplitude of
the switching ripple. The robustness does not go to zero
in the event that the switching ripple is eliminated (as in
[77]) but is very substantially diminished. As a result, self-
sensing systems will tend to work better when the coil
currents exhibit a lot of high frequency ripple.

This observation is signficant because switching ampli-
fier technology for AMB systems has moved from early
approaches that used only two output states (+Vps or −Vps)
to use of three output states (+Vps, 0, −Vps). The reason
for this is that the amplifier becomes more efficient and
eddy current losses and acoustic emissions from the AMB
are reduced.

However, with three state drive, the amplitude of the
switching ripple is substantially reduced (sometimes by
a factor of 10 or so) so that self–sensing with three
state amplifiers is difficult. Of course, solutions such as
that proposed originally by [14] and implemented in [73]
sidestep this problem by injecting a special signal into
the power amplifier intended to achieve sufficient ripple
amplitude to obtain adequate system robustness. However,
this is only accomplished at the expense of much of the
efficiency targeted by the three state switching operation.

This limitation appears to be fundamental and probably
means that robust self-sensing AMB systems will typically
be somewhat less efficient (in terms of electrical power)
than the equivalent discretely sensed AMB. Approaches
are likely to be a combination of accepting higher losses
combined with methods such as presented in [27] to
mitigate the modest robustness achieved at lower ripple
levels.

B. Eddy Currents

Eddy currents pose a special problem, particularly in
unlaminated actuators such as thrust bearings. The primary
consequence of eddy currents is an effective reduction
in iron permeability at high frequencies (see [26] for in-
stance). This means that the variation in actuator impedance
with changes in gap – the sensitivity of the device as a
position sensor – is poor at high excitation frequencies. It
further means that the shape of the current ripple waveform
may not be the clean triangle anticipated by [19].

Figure 5 illustrates a typical eddy current waveform in
response to 2–state switching. The cusps in the current
waveform that appear at each switching instant are con-
trolled almost entirely by eddy currents in the actuator
iron. The size of these cusps can be quite large: for an
unlaminated thrust actuator, they can be 20 or 30 percent of
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Fig. 5. AMB waveforms for 2-state switching with eddy current
production.

the bias current level, depending on the amplifier switching
voltage. The problem with these cusps is that they are not
affected by changes in air gap length so they represent a
substantial loss in sensitivity of the waveform to air gap.

The primary solution to this problem is to reduce the
frequency of the excitation signal – go to lower switching
rates (and also lower switching voltages) or use a special
interrogation signal. In [73], this issue is addressed by
recommending use of a special interrogation signal whose
frequency is selected to be just a bit above the effective
bandwidth of the actuator. This bandwidth is determined, in
part, by the eddy current production. Therefore, linking the
interrogation frequency to the actuator bandwidth attempts
to preserve sensitivity to gap by minimizing production of
eddy currents by the sensing process.

In methods such as [19] which rely on the instantaneous
slope of the waveform to determine gap length, a sampling
delay needs to be inserted between the switching instant
and the sampling interval. This delay should be propor-
tional to the eddy current time constant: the decay time of
the cusps in Fig. 5.

Parameter estimation methods, such as [56], should add
an eddy current model to the embedded electrodynamic
simulation in order to account for this effect.

C. Saturation

Perhaps the most vexing problem facing researchers in
self-sensing is that of magnetic saturation. This problem
has been acknowledged since some of the earliest work
in self-sensing [20]. The issue is that saturation reduces
the permeability of the actuator iron at high flux densities
and this changes the sensitivity of the actuator to air gap
dramatically. In particular, if the actuator current is held
constant and the air gap is changed, then the slope of
the switching ripple will diminish with decreasing gap
until the iron begins to saturate. At this point, further
reduction in air gap produces two results: a reduction in
circuit reluctance due to the narrowing gap and an increase
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Fig. 6. Switching waveform amplitude vs rotor position for two opposing
AMB sectors. From [45].

in circuit reluctance due to iron saturation. The result is
summarized in Fig. 6 which shows that the sensitivity
(slope of the curve) actually reverses at some point and
a simple demodulation scheme will actually produce an
ambiguous signal: the same output can arise at two different
rotor positions.

A number of solutions to this problem have been posited.
In [20], the actuator has an excess of poles (six horseshoe
pole pairs rather than the usual four). In this case, it is
possible to momentarily reduce the flux density in selected
pole pairs to ensure a fixed level well away from saturation.
The current in this pair is then perturbed to estimate the
gap length. The principal drawback to such an approach
is that the amplifier voltage required to rapidly de-saturate
the pole pair, interrogate the gap, and bring the pole pair
back into saturation can be substantial: well in excess of
the nominal requirement of the system. Another solution
is proposed in [55] in which all of the pole gaps are
simultaneously estimated in a MIMO parameter estimation
scheme. In this case, it is shown that such a scheme can be
robust to short periods of actuator saturation and still yield
a reliable position estimate. The literature on self–sensing
since [55] has generally stayed away from the saturation
problem so this appears to be a relatively ripe area for
continued research.

VI. CONCLUSIONS

Self–sensing AMB technology now presents a commer-
cially viable alternative to using discrete position sensors
in AMB systems. This alternative offers significant cost
savings and the potential for dynamics advantages due to its
fundamental sensor-actuator collocation. Several technical
approaches are available: linear system based, linear system
with parameter identification, switching ripple based, and
interrogation signal based. Of these, the linear system
with parameter estimation and interrogation signal based
approaches have been developed as commercial products.
Generally, the existing commercial products make modest



demands on the system sensing performance: in order
to realize products with more aggressive requirements, a
number of lingering technical hurdles remain to be crossed.
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