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1 Introduction 
 
The manufacturers and the users of industrial 
revolving machines are often confronted with 
technical problems such as heating, frictions, 
vibrations, maintenance, pollution... moreover, the 
research tasks showed the interest to increase speeds 
of machining of materials what requires adapted 
equipment.  The active magnetic bearing (AMB) 
presents a solution to these problems since it ensures 
the total levitation of a body in space by 
electromagnetic forces, thus eliminating any 
mechanical contact between the rotor and the stator 
[1]. The development of a new nonlinear model which 
considers the unbalance (disturbance due to the non-
coincidence of the geometric axis and the axis of 
inertia of the rotor (Fig.1)) presented this disturbance 
like an intrinsic variable at the system and either like 
an external additive disturbance [2]. A control law 
based on the passivity, was developed; as well as 
other types of control: sliding mode, input-output 
linearization, and fuzzy controller [3]. Some of these 
techniques were tested in real time on an active 
magnetic bearing which turns to 30 000 rd/min, at the 
Heudiasyc laboratory of the UTC [4].  
The goal of our work is to show that the control of the 
AMB by multilayer perceptrons (MLP) involves an 
improvement of the response compared to the control 
of the AMB by classical controllers. 
We have recourse to a MLP controller each time the 
modeling of the system in question is difficult and 
includes approximations [5],[6]. The MLP have the 
advantage of learning, i.e. to adapt to new situations 
even if these situations are not learned with the 
network during the training phase [7], [8].  In the first 
time a controller by artificial neural network MLP was 
developed to control the pin.  Several diagrams were 
developed. The last diagram that was used has all the 
parameters optimized in order to obtain better results 
concerning the temporal answers of the positions of 
the axes [9], [10].  
 

2 Active Magnetic Bearing 
 

There are two families of magnetic bearing: 
Passive magnetic bearing and active magnetic 
bearing: 
The passive magnetic bearing contains a permanent 
magnet. In this type of MB, we can’t modulate the 
current vector to control the electromagnetic forces.  
In the active magnetic bearing AMB, we can 
modulate the current vector to control the 
electromagnetic forces [1]. 
The AMB, presented at the Heudiasyc laboratory of 
the UTC, is formed by two plane of control. (Y1, Z1) 
plane and (Y2, Z2) plane. An X axis in the middle and 
an asynchronous motor (Fig.1).  
In order to control the system, a state-input 
linearization was made [4]. The diagram of the closed 
loop system is presented (Fig.2). The goal of our work 
is to show that the control of the AMB by MLP 
involves an improvement of the response compared to 
the control of the AMB by classical controllers [10]. 
 
  
 
 
 
 
 
 
 
 
 
 

Fig.1. representation of the AMB with an asynchrounus motor 
 
Three models are highlighted: A very complicated 
model in which all the nonlinearity is included, i.e. 
model very close to the behaviour of the real system. 
A model including some simplifications, i.e. model of 
analysis in which the effect of the unbalance is made 
on one plan of control and a simplified model [11]. 
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TABLE.1 
MECANICAL AND ELECTRICAL PARAMETERS OF THE 

AMB 
 

 
 

Mechanical  parameters 

m 3.097 kg Weight of the rotor 
Ix 8.589x10-4kg.m2 Inertia moment for the x axis 
Iy 2.146x10-2 kg.m2 Inertia moment for the y axis 
Iz 2.146x10-2 kg.m2 Inertia moment for the z axis 
e0 0.4 x10-3m  

lc 0.1315m 
Distance between geometric 

center and sensors 
dca 1.8 x10-2m  

fv 1000Hz 
Frequency of the first flexible 

mode of the rotor 
Φ’max 30000tr/min Rotation maximal speed  

   
 Electrical  parameters 

R 0.2Ω Resistance  
L 3mH Inductance  
λ 1.2x10-6mH.m  

Rx 1.6 Ω 
Resistance in relation with the 

x axis 

Lx 5.8mH 
Inductance in relation with the 

x axis 
λx 2.32x10-6mH.m λ in relation with the x axis 

Imax 6 A Maximal current 
Vmax 50 V Maximal tension 

   
 Sensors and input  parameters 

inputs 
-10, +10V for a rotor 

displacement  
-0.25x10-3, +0.25x10-3m 

Courant 
inputs  

0, +10V for a current 
variation 

0 : 6A 

Tension 
inputs  

0, +10V for a tension 
variation 

 -50 : +50V 

 

2.1 Equations of the system 
The mechanical and the electrical parameters of the 
AMB are presented in table 1. To define the equations 
of the model we must do different calculations.  
1- The mechanical energy represented by (1) divided 
into translation kinetic energy and rotation kinetic 
energy. The calculation is made by considering a 
moving body in space and the energy must be 
calculated in function of the positions measured by 
the sensors.  
      
                                                                   (1) 
 
2- The electrical energy and the mechanical potential 
energy, which indicates the effect of the gravity. 
3- The dissipated electrical energy and Deduce the D 
matrix from (2) 
 

                                                                    (2) 
 
4- Deduce the C matrix from the D matrix by using 
equation (3) 
 
                                                                            (3) 
 
 
The equation (3) will be applied for c1, c2, c3, c4, c5, c6. 
So, the model contains six mechanical equations and 
ten electrical equations. 
The principle is to calculate, by using the D and the C 
matrix, the outputs of the model represented by X= [x, 
y1, z1, y2, z2,]’, to be able to integrate it into the 
buckled system [12]. The equations become more 
complicated. All the equations are written on 
MATLAB. Simulating system that considers the 
complicated model will give a real representation of 
the behaviour of the system controlled by MLP in real 
time [13], [14]. 

3 Optimal diagram   

3.1 The first diagrams 
 

We add the MLP bloc to our system in order to 
improve the temporal responses of the position of the 
axes on the overshoot, time boarding and response 
time level. In addition to the implementation of the 
system, the control by MLP requires two more steps: 
Learning stage and Online treatment. 
In the first diagram the MLP was added to the system 
controlled by PID by taking the desired positions 
vector qd as input and the φ vector as output added to 
the error calculated in (4). qs Represents the output 
vector  

→→→→
φ+−= sd qqe     (4). 

 By this emplacement, the MLP tend to minimize the 
V1 vector represented by (5). 

∫φ−φ−φ−=
→→→→

dt.k.k.kVV i

.

vp1    (5) 

The simulation on MATLAB showed that the system 
controlled by this structure of MLP doesn’t represent 
any amelioration on the overshoot, boarding time and 
response time level for the output responses compared 
to the system controlled by PID alone. This leads to 
the necessity of a new structure of MLP to control this 
system. So, many diagrams were developed. 

       Fig.2. diagram of the closed loop system without MLP 
 



In the second diagram, the output of the system is 
considered as input to the MLP and its output was 
added to the error. Simulations made showed that the 
response time of the system controlled with MLP is 
much bigger than the one controlled with PID alone. 
This structure was rejected.   
 
The third diagram consists in replacing the PID 
controller by a PD controller in order to improve the 
response time of the system, the output responses 
diverge. 
Another diagram was proposed by taking the output 
of the system and its derivation as input and we add 
the output to the error calculated. In this case the MLP 
seems learning but the responses don’t represent a big 
improvement on the overshoot, time boarding and 
response time level. Also this structure was rejected.  
  

3.2 Optimal diagram 
The work done before leads us to an optimal 

diagram.  
We add the MLP to our system by taking the current 
vector like entry of the network and the vector force 
like exit (Fig.3).  
 

 
    Fig.3 optimal diagram of the closed loop system 
            The gain bloc represents the weight of the rotor. 
 

3.3 Back-propagation Method 
The control of the system by MLP requires two 

steps: Learning stage and online treatment. 
For the optimal diagram obtained before, a back-
propagation method was adopted to learn the MLP. 
The learning of the MLP is made on line for the two 
stages. In each stage, direct and back-propagation 
calculations are made. 
Direct passage: In the direct passage, we calculate the 
output of the network by multiplying the weight 
vector by the input vector. We will consider a network 
for one hidden layer. 
Back-propagation passage: this method consists in 
calculating in a reverse way in order to adjust the 
weight vector. After calculating in a direct way, we 
calculate the local gradient in order to adjust the 
weight vector in each period.  
 

4 Simulations and Results 
 
We add the MLP to our system by taking the current 
vector like entry of the network and the vector force 
like exit. (Fig.3) 
Working with a complicated system that considers the 
unbalance on two plan of control will be closer to the 
reality of the machine. The simplifications used in this 
model are: cos θ = 1 and cos ψ = 1, sin θ = θ and sin 
ψ = ψ; Centre of gravity of the rotor is equal distance 
from the 2 plans of control, which implies   δx = 0; δz 
and δy represent the parameters influencing the 
existence of the unbalance.   
NB: θ represents the swing angle around the y axis, ψ 
represents the swing angle around the z axis and Φ the 
swing angle around the x axis. 
The existence of δz will influence the positions z1 and 
z2. The existence of δy will influence the positions y1 
and y2.  
For a number of neurons equal to eight in the hidden 
layer, the learning parameter η = 0.001, the 
momentum term α = 0.1, the number of epochs = 15 
and the number of examples = 501, a compromise is 
made between the overshoot, time boarding and 
response time of the temporal answer. For these 
optimisations and for δz=δy=8*10^-5 m, a comparison 
is made between the complicated system with PID 
alone and the system with MLP. 
One can deduce that by increasing the parameters 
relating to the disturbance, the non linearity becomes 
more significant, the learned system with MLP has a 
capacity to reduce this disturbance in order to stabilize 
the system around the desired answers. Some 
remarkable oscillations can be eliminated by varying 
the PID parameters [10]. 
 
 
 
 
 
 
 
 
 
  
 
 
   Fig.4: Temporal response of the Y1 axes. 
              In red-1: the curve for δz = 8*10^-5 m with MLP, in  
              blue- 2: the curve without MLP and in green-3: the desired  
              answer. 
Figure 4 represents the temporal response of the Y1 
exit. Y2 exit has the same results. The improvement 
of the system on the Y1 exit with MLP is very 
important on the overshoot, response time and 
convergence of the temporal answer compared to the 
system controlled by PID alone. 



Figure 5 represents the temporal response of the Z1 
exit. Z2 exit has the same results. The response is 
presents many oscillations compared to the one 
controlled by PID alone. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5: Temporal response of the Z1 axes. 
          In red-1: the curve for δz = 8*10^-5 m with MLP, in  
          blue- 2: the curve without MLP and in green-3: the desired  
          answer. 
 
Figure 6 represents the temporal response of the X 
exit. The response presents many oscillations but the 
response is more convergent from the response of the 
system controlled by PID alone. 
 
 
 
 
 
 
 
 
 
 
 
Fig.6: Temporal response of the X axes. 
          In red-1: the curve for δz = 8*10^-5 m with MLP, in  
          blue- 2: the curve without MLP and in green-3: the desired  
          answer. 
 
To improve the convergence of the temporal 
responses and to reduce the oscillations, variations of 
the PID parameters are made. Table.2 represents the 
values of the parameters Kp, Kd and Ki for the five 
exits.   
 

TABLE.2     
    PARAMETERS OF THE PID 

 X Y1 Z1 Y2 Z2 
Kp 1500 9600 9300 9600 9300 
Kd 64 640 640 640 640 
Ki 2000 56000 55000 56000 55000 

 
A simulation giving the temporal response of the 
position of the axes by compromising the values of 
Kp, Kd and Ki is made. Figure 7 and 8 represent the 
results of these variations on the Y1 and Z1 outputs. 
Y2 and Z2 are similar and the X axis doesn’t 
represent any changes.  

 
 
 
 
 
 
 
 
 
 
Fig.7: Temporal response on  the Y1 axes with a varied PID   
           Parameters. In red-1: the curve for δz = 8*10^-5 m with  
           MLP, in blue- 2: the curve without MLP and in green-3: the  
           desired answer. 
By comparing the results obtained for a system with 
MLP and a system with PID alone, we can deduce 
that the improvement is acceptable. Even so, it will be 
very important to improve these results on the 
overshoot and response time level and reduce the 
oscillations obtained.    
 
 
 
 
 
 
 
 
 
 
 
Fig.8: Temporal response on  the Z1 axes with a varied PID   
           Parameters. In red-1: the curve for δz = 8*10^-5 m with  
           MLP, in blue- 2: the curve without MLP and in green-3: the  
           desired answer. 
 

5 A new method of control  
 
The Optimal diagram used before consists in adding 
the output of the MLP to the Force vector in order to 
calculate the current vector. 
The temporal response of the position of the axes was 
improved by varying the parameters of the PID 
controller. So we will consider an artificial neural 
network in which we use the output of the network as 
input of the PID controller. 
We add the MLP to our system by taking the current 
vector like entry of the network and the input of the 
PID controller like exit. (Fig.9) 
 
 
 
 
 
 
 
 
Fig.9. diagram of the closed loop system with an MLP as input to 
the PID controller. 



We control the MLP by calculating the input of the 
PID controller in order to minimise the error 
represented by:  e (t) = yd(t) – y(t). 
 

5.1 Indirect Learning with Back-
propagation Algorithm 

 
The basic back-propagation algorithm is based on 
minimizing the error represented by 
e (t) = yd(t) – y(t). 
Figure 7 represents the artificial neural network tuner. 
 
 
 
 
 
 
 
 
 
 
 
Fig.7.  Artificial neural network tuner. 
  
We have to recalculate the entire back-propagation 
algorithm for both the output and the hidden layer of 
the neural network. The idea is to update the value of 
the neural network weights in order to minimize the 
global error: 
 
 
 
These updating equations are used in the learning 
phase of the network. The back-propagation phase. 
Referencing to figure 7, we consider the following 
parameters: 

• W1 and W2 are the weights of the hidden 
and the output layers. 

• Hj is the output of the hidden layer. 
• Ok is the output of the output layer. 
 

For the direct calculation, the equations are: 
 
 
 
 

         

5.1.1 Calculation of the output 
layer 

The global error is equal to: 
 
 
 
 

The minimisation of the global error leads to the 
minimisation of: 
 
 
 
 
 
 
 
 
 
 
 
 
The Model, H and M are represented in the closed 
loop diagram of figure 9. 
 
We must calculate in what follows the term  
 
 
 
Due to the PID controller, we know that: 
 
 
 
 
 
 
 
 
 
 
 
 

A- If the output is Kp, i.e  Kpx, Kpy1, Kpz1, 
Kpy2, Kpz2  

 
 
 
 
 

B- If the output is Ki, i.e  Kix, Kiy1, Kiz1, 
Kiy2, Kiz2 

 
 
 
 
 

C- If the output is Ki, i.e  Kix, Kiy1, Kiz1, 
Kiy2, Kiz2 

 
 
 
 
And the last term 
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The updating equation for the weights of the output 
layer is: 
 
 
 
 
 

5.1.2 Calculation of the hidden 
layer 

 
The same calculations could be done for updating the 
weights of the hidden layer: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             the same calculation as for output layer. 
 
 
 
 
The updating equation for the weights of the hidden 
layer is: 
 
 
 
 

6 Simulation of the new back-
propagation method 

 
All these equations are written on Matlab in order to 
be simulated in the near futur. This method consists in 
calculating in each period the inputs of the PID 
controller. 
The MLP tends to update his weights on each period 
in order to minimise the global error represented 
before. This tuning of the parameters of the PID 
controller by neural network will improve the 
temporal response of the position of the axes 
compared to a system controlled by PID alone. 
 

7 Conclusion and perspectives 
 
Simulations done on Matlab show very clearly the 
improvement of the answers by using the old MLP 

method. Using the back-propagation method for an 
optimal diagram improves the responses obtained by a 
well learned MLP. The next step we are working on is 
the real time application. Implementation on DSP of 
the neural network and studying the behaviour of all 
process. So we will present in the near future, the 
results tested on the active magnetic bearing at the 
Heudiasyc laboratory of the UTC.   
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