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Abstract— Magnetic bearings are systems where strong
interactions coexist between electro-magnetic and mechanical
phenomenon. This paper presents an analysis of these interac-
tions and of the way they can generate a potentially unstable
behaviour. An analytical model is presented considering the
electromagnetic nature of the forces and the general rotating
machinery aspects. The coefficients of the model are found by
identification with a finite element model of the system and
with experimental measurements.

Index Terms— Magnetic bearings, induced currents, dy-
namical instabilities model

I. I NTRODUCTION

Nowadays, magnetic bearings can be found in an
increasing number of applications. Indeed, the contactless
nature of these bearings destine them to be the ideal
bearing in, among others, high-speed and vacuum
applications.
Magnetic bearings can be classified as active, passive or
semi-passive magnetic bearings. Semi-passive magnetic
bearings combine the advantages of active and passive
magnetic bearings. On one hand, they are less energy
consuming and less costly than completely active magnetic
bearings, and on the other hand they are controlled in
some of their degrees of freedom, which allows the
suspension to have positive stiffness in all directions.

These semi-passive magnetic bearings have already been
tested and used notably in energy storage applications
and in space applications. Generally, the stability study
of a magnetic bearing is limited to the study of its static
characteristics, and its gyroscopic effects [1], [2]. But
when used in high-speed spinning systems, studies [3]
have shown the onset of vibrations not predicted by a
static and gyroscopic analysis: indeed they take place
after critical speeds have been passed, and are not due to
gyroscopic effects.
This paper presents the analysis of this observed
potentially unstable dynamical behaviour of a rigid rotor
supported by magnetic bearings. It shows how the unstable
behaviour can be explained by the consideration of non-
conservative forces, and the location where they take place.
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In the first section of this paper, an analytical model is
developed representing the behaviour of systems submitted
to electromagnetic forces. These forces are represented
by damping and spring coefficients, and by an electrical
phase shift, resulting of the global resistance and the
global inductance of the system.
In the second section, this analytical model is validated
through a comparison with finite elements models of a
simple electromagnetic case.
In the last section, the results of the finite element models
of this simple case are compared with experimental results.
Finally, it is concluded.

II. ELECTROMECHANICAL MODEL

Magnetic bearings are electromechanical systems. From
a mechanical point of view, their modelling is plainly
related to general rotating machinery modelling but the
forces acting between the rotor and the stator are of an
electromagnetic nature.
This section will first show how the coupling of the
rotational motion of the rotor and the dissipative nature of
forces can generate an unstable behaviour. Talking about
magnetic bearings, currents induced in the conducting parts
of the rotor by the spinning of the rotor generate dissipative
forces in the rotor. This leads us to the second part of this
section where we adopt an electromechanical point of view
to develop a model integrating the rotating modelling and
the electromagnetic nature of the forces exerced on the
rotor.

A. Mechanical equations

Let us write the equations of motion of a damped linear
Jeffcott rotor. The Jeffcott rotor is a point mass, weighing
m, attached to a massless shaft. The shaft produces an
elastic restoring force of stiffnessk on the rotor. The spin
speed isω. The damping in the system can be splitted in
two:

• on one side, the damping taking place in the stator,
called ”non-rotating damping”, and notedcnr in the
following sections,

• and on the other side, the damping taking place in
the rotor, called ”rotating damping”, and notedcr in



the following sections.

The position(x, y) of the rotor in the perpendicular to
the rotation axis plane can be expressed by a complex
vectorz = x+ jy. The equation of motion is, as explained
in [4]:

mz̈ + (cnr + cr)ż + (k − jcrω)z = 0. (1)

The solutionz = z0 exp (jλt), with λ = λR + λIj a
complex number, corresponds to:{

x=z0 exp(−λIt) cos(λRt)
y=z0 exp(−λIt) sin(λRt)

It can be obtained forλ:

λ = ∓ 1√
2

√
Γ +

√
Γ2 + (ωcr/m)2

+ j

(
cr + cnr

2m
± 1√

2

√
−Γ +

√
Γ2 + (ωcr/m)2

)
,

with:

Γ =
k

m
− (cnr + cr)2

4m2
.

The first solution has a negative real part and an always
positive imaginary part forλ: it corresponds to an always-
damped backward whirl motion.
The second solution, corresponding to the positive real part
of λ, represents a forward whirl motion. It is only damped
when the imaginary part ofλ is positive, that is for a spin
speedω smaller than the limit spin speedωlim given by:

ωlim =

√
k

m

(
1 +

cnr

cr

)
. (2)

Whenω > ωlim, the forward whirl motion is permanently
amplified.

It can here be observed that the rotating damping,
which is a non-conservative force, has a destabilising
role. When cr is negligible in comparison tocnr, the
limit spin speed tends to infinity and there is no problem.
But when cr is not negligible, the behaviour of the
rotor is unstable beyond a finite limit spin speedωlim.
This limit spin speed is all the more smaller and tending
to the critical speed

√
k/m than the ratiocnr/cr is smaller.

B. Electromechanical model

In magnetic bearings, deliberate or not eddy currents
can appear. Indeed, an electromotive force is induced in
the conducting pieces of the magnetic bearing seeing a
variable magnetic field because of an off-centred spinning
motion of the rotor. This induced electromotive force
produces currents in the conducting piece, which interact
with the magnetic field to generate a Lorentz force.
From a mechanical modelling point of view, the
electromagnetic forces acting on the system are represented
by mechanical components like dampers or springs. The
Lorentz force due to induced currents, being dissipative,
can be represented by a damping coefficient. This damping
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Fig. 1. schematic view of a rotor whirling within a stator, its correspond-
ing frames and mechanical components to model the forces

coefficient will be cr for induced currents taking place
in the rotor, and will becnr for induced currents taking
place in the stator.

Let’s consider that the conducting piece where currents
are induced has a global resistanceR, and a global
inductance is L. The electromotive force generates
currents in the piece, with a phase shift of an angle
θ = arctan ωL

R . The interaction between the induced
currents and the magnetic field creates an electromagnetic
force perpendicular to the latter, so this force has the same
phase shift.

The phase shift can be taken into account by introducing
a phase shift in the forces modelled by a damper. For
an only resistive piece,θ = 0, the resultant force is
perpendicular to the centre shift. On the other hand, for an
only inductive piece,θ = π

2 , the resultant force is parallel
to the centre shift.

We will consider in the following developments that
there are induced currents only in the rotor. A first way
to find the equation of motion, like explained in [5], is to
work with a whirling frame attached to the rotor{X̂}, and
a second frame{Ŷ } turning at the same speed as frame
{X̂}, but with a constant phase shiftθ (Fig. 1). The force
due to the induced currents is directed along the axis of
frame{Ŷ }.

Another way to find the equation of motion is to intro-
duce the notion of complex damping coefficient. Let us say
that cr = c′r + jc′′r . The real part ofcr corresponds to the
usual damping, whereas the imaginary part corresponds to
a stiffness in the sense that it does not imply any energy
dissipation.
Applied to induced currents, it can be noticed that

• c′r represents the losses due to the resistance of the
piecec′r = −cr cos θ

• c′′r represents the energy storage in the inductance of
the piecec′′r = cr sin θ



Finally, the equations of motion are in this case,

mz̈ + (cnr − cr cos θ + jcr sin θ)ż

+(k + ωcr sin θ + jωcr cos θ)z = 0. (3)

It can be observed that in this case, there are non-diagonal
terms not only in the stiffness matrix, but also in the
damping matrix. The equation of motion can also be
written: (
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) (
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=
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)
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with:(
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Stability conditions becomes in this case:

ωlim = (1 + cnr

cr cos θ )(wdyn ±
√

ω2
dyn + ω2

cr) (6)

with

ωcr =
√

k/m

ωdyn = cnr tan θ/(2m)

Eq. (6) is non linear and has to be solved by iterations.
With no phase shift (θ = 0, only resistive piece) we find
the previous stability condition again (2).
Whenθ grows, i.e. the inductance of the piece is not zero,
the limit speed gets bigger and is less restrictive.
When θ tends to π

2 (only inductive piece), the limit
speed tends to infinity, and the system tends to
become unconditionally stable. This is the case of
supraconductors: the resistance is almost zero, and the
system is unconditionally stable.

III. F INITE ELEMENTS VALIDATION

To validate this model, the electromechanical model is
confronted to a case study modelled by a finite element
modelling software.

The simple case chosen for this comparison is an
aluminium disk (diameter 60 mm, height 10 mm) spinning
in a vertical magnetic field, as shown in Fig. 2. The two
permanent magnets used to generate this magnetic field
are charcterized by a magnetisation directed parallel to the
rotation axis, and by a residual induction is worth1.21T.
Their dimensions are 5x10x40 mm. The centre of rotation
of the disk lay away from the permanent magnets with a
distanced. The disk has a height of 10 mm, and the air
gap between the magnets and the disk is 1 mm.

A. Parameter identification

In the analytical model, different parameters are
unknown. First, they will be determined by interpreting
the physical phenomenon involved, and afterwards the
remaining parameters will be found by identification
between the analytical expression of the forces and the
estimation of the forces by a finite elements model.

Analysing the study case, it can be observed that:
• k = 0, andcnr = 0.

Indeed, when the ring is not moving (ω = 0), no forces are
exerced on it (aluminium is not ferromagnetic). This means
that the stiffnessk is worth zero. Furthermore, when the
conducting piece is moving, there are no losses in the non-
rotating magnets (cnr = 0).
It can be noted that this particular system is always
unstable! (ωlim = 0, see (6)).
Moreover, in this study case,x = d, y = 0, ẋ = 0 and
ẏ = 0 in (5): the centre of the ring is fixed.

FX = −crω sin θd, (7)

FY = −crω cos θd. (8)

The two left parameters arecr andθ.

The first way to identify them is to apply the least square
criterion to the forces resulting from the model ((7) and (8))
and the forces calculated by the finite elements method.
Another way to identifycr andθ is to use the ratio between
(7) and (8), we get

FX/FY = tan θ = ωL/R (9)

The ratioL/R is identified using the least square criterion.
To find cr, the rotation speed of the disk is set to zero, and
the disk is given a vertical speed:x = d, ω = 0 andẏ = v.

FX = 0, (10)

FY = crv. (11)
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Fig. 2. Assembly chosen to validate model: aluminium disk rotating in
a vertical magnetic field



Fig. 3. induced currents in an aluminium ring rotating at 10000 rpm

Again, the parametercr can be identified with the least
square criterion.

B. Two dimension finite elements model

We performed a first identification on the basis of a 2D
FE model.
In this cas, it is supposed that the magnetic field generated
by the permanent magnet in Fig. 2 is not function ofz
within the disk. This means that any slice of the disk sees
the same magnetic field and we can make a 2D model of
the assembly. On Fig. 3, the shape of the induced currents
can be observed. Those currents interact with the magnetic
field to generate a force directed along the x-axisFx, and
a force directed along the y-axisFy.

For d = 25mm using the first identification method((7)
and (8)), it can be found for those parameters:

• cr = 0.0297 Ns/m,
• θ = arctan ωL

R = arctan (ω 0.00183),
The results are shown on Fig. 4 and 5.
Using the second identification method ((9) and (8)), the
values found forcr andθ are:

• cr = 0.0217 Ns/m,
• θ = arctan ωL

R = arctan (ω 0.00183).
First, it can be noticed that the results found for the two

parameters are very close, and either of the two methods
can be used. The advantage of the first method is that
only one FE model has to be solved. The advantage of the
second method is that each parameter is found separately,
which simplifies the identification.
Second, it can be observed that the evolution predicted by
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Fig. 4. Fx: Comparison between model force and 2D finite elements results

0 200 400 600 800

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

ω (rad/s)

F y
(N

)

finite elements results 2D
analytical model results

Fig. 5. Fy : Comparison between model force and 2D finite elements results

the analytical model corresponds quite approximately to
the evolution predicted by the finite elements model.
Let us note however that the validation was carried out on
a 3D structure degenerated into a 2D structure neglecting
among others the magnetic field penetration depth in the
disk.

C. Three dimension finite elements model

To complete this 2D study, we performed a second
identification on the basis of a 3D FE model.
For this 3D model, it can be noted that the system includes
a plane of symmetry, so only half of the model has to be
solved (see Fig. 6).

Again, the parameters of the analytical model are found
by applying the least square criterion on the forces cal-
culated by the FE model and the parameterised analytical
model forces.
It is found

• cr = 0.733 Ns/m,



Fig. 6. Meshed model for finite elements modelling

• θ = arctan ωL
R = arctan (ω 0.00244).

It can be seen on Fig. 7 and Fig. 8 that the forces
predicted by the analytical and 3D FE models match.
Besides, it can also be seen that the forces predicted by the
3D FE model are much bigger than the forces predicted by
the 2D FE model.

IV. EXPERIMENTAL VALIDATION

The difference between the forces predicted by the 2D
and 3D FE model of the system is substantial.
In order to decide between the two FE models, we have
completed our study by an experimental validation.

The experimental set up of the system is the following
(see Fig.9): the aluminium disk is driven by a milling
machine allowing rotation speeds up to6300 rpm. Through
the action-reaction principle, the forces exerced by the
magnetic circuit on the disk are opposed to the forces
exerced by the disk on the magnetic circuit. We measure
the latter by a force/torque sensor attached to the magnetic
circuit.

The results are shown on Fig. 10 and Fig. 11. The
experimental measurements and the predicted forces by
the 3D FE model correspond to each other. The small
differences observed are probably due to the heating of
the aluminium disk via the induced currents, influencing
its resistivity, to measurement uncertainties, and to FE
calculation inaccuracies.
On Fig. 10 and Fig. 11, the results of the analytical model
are also shown. In this case, the parameter identifications
has been done on the basis of the experimental measured
forces. This gives:

• cr = 0.7176 Ns/m (97.9% of cr found via 3D FE
model),

• θ = arctan ωL
R = arctan (ω 0.0032) (132% of L

R
found via 3D FE model).
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Fig. 7. Fx: Comparison between model force and 3D finite elements results
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Fig. 8. Fy : Comparison between model force and 3D finite elements results

It can be said that either of the FE model or of the
experimental results can be used to identify to analytical
model parameters.

Lastly, it is interesting to observe the evolution of the
parameterscr and θ = atan(ωL/R) with the distanced.
Table I shows the evolution of damping and phase shift
with distanced. At this stage, it seems difficult to find an
analytical law to predict this evolution.

TABLE I

EVOLUTION OF cr AND θ WITH d

d (mm) 25 24 23 22 21 20

cr(Ns/m) 0.733 0.829 0.951 1.0325 1.1559 1.216

L/R (mH/Ω) 2.44e 1.99 1.45 1.25 0.811 0.623



Fig. 9. Experimental set up to measure forces

V. CONCLUSION

An analytical model has been presented representing the
behaviour of systems submitted to electromagnetic forces.
These forces were represented by mechanical components
as damping and spring coefficients, and by an electrical
phase shift. The comparison of the evolution of the
forces between FE and analytical models is convincing.
The results of the 3D FE model also corresponds to the
experimental results.
The parameters of this model are easily identified using
finite elements or experimental results, but since it is
difficult to characterize their evolution with the position
of the rotor via a single evolution law, they should be
identified point by point.
It can be concluded that the electromechanical model
and the assumptions introduced to obtain it are valid. In
particular, the idea of characterizing the rotating part by
a resistance globalR and an inductance globalL seems
correct.

In the long term, the electromechanical model presented
in this paper, completely identified via FE modelling or
experiments, should allow us to predict the dynamical
behaviour of semi-passive magnetic bearings subject to
important eddy current losses in the rotating part. To
increase the stability of the system, appropriate changes
can be made to its intrinsic parameters. The stability can
be increased by working on the rotor (i.e. rotating damping
cr and ratio L

R ), by working on the stator (non-rotating
dampingcnr), or by having recourse to an external damping
system, taking place between the stator and the inertial
base. The electromechanical model presented in this article
gives us a practical tool to analyse and understand the
behaviour of the modified system before implementing
these different solutions.
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