
Modeling and Implementation of Active Magnetic 
Bearing Rotor System for FPGA-based Control 

 
 

Rafał Jastrzębski, Riku Pöllänen 
and Olli Pyrhönen Antti Kärkkäinen Jussi Sopanen 

Dept. of Electrical Engineering Dept. of Mechanical Engineering Faculty of Technology 
LUT LUT South Carelia Polytechnic 

P.O. Box 20, FIN-53851 
Lappeenranta, Finland 

P.O. Box 20, FIN-53851 
Lappeenranta, Finland 

Pohjolankatu 23, FIN-53101 
Lappeenranta, Finland 

rafal.jastrzebski@lut.fi antti.karkkainen@lut.fi jussi.sopanen@scp.fi 
 
 

Abstract – This article reveals an implementation of 
a flexible rotor model with the nonlinear actuator for 
an LQ-control realization using field programmable 
gate arrays. The presented AMB-rotor model can be 
utilized both for the controller (as a state observer and 
nonlinearity compensator) and for the system 
development as a real-time plant emulator. The 
different variants of the LQ position control are 
considered in regard to the rotor model, used as a part 
of the observer. The model of the studied rotor was 
obtained using the finite element modeling, modal 
reduction technique and experimental analysis. 

 
Index Terms – Magnetic levitation, magnetic 

bearings, digital control, linear-quadratic control 

I.  INTRODUCTION 

A digital control of an active magnetic bearing system is 
a very demanding engineering task, when real-time 
embedded realization is considered. From the control point 
of view the active magnetic bearing (AMB) rotor system is 
unstable, nonlinear, multivariable plant with varying 
parameters and residual dynamics. When in fact, the most 
commonly employed control methods are simple linear 
ones, notably PID-based (e.g., a decentralized PID 
feedback as in [1]) and rotating rigid body model-based 
control methods, e.g. [2] and [3]. These techniques are 
feasible for many control applications. However, in the 
case of high speed rotating machines, highly flexible rotors 
and external disturbance forces, a high performance 
control is required. Therefore, influence of flexible rotor 
modes and actuator nonlinearities should be taken into 
account in the controller. In particular the physical 
limitations point at the formulation of the control strategy 
as a linear-quadratic (LQ) optimization problem. The LQ 
optimal control, as suggested in [4], seems to be a suitable 
control method for the AMB system. Compared to the 
above references, the presented LQ optimal control 
solution is applied to the flexible rotor and it differs in the 
usage of a full current state observer, disturbance observer 
and utilization of Bryson's rules [5]. 

Digital implementations of the control of 
electromechanical systems are typically based on digital 
signal processors (DSPs), but the realizations of pulse wide 
modulators and other actuators, which are based on field 

programmable gate arrays (FPGAs) are not uncommon. 
For the DSP-based realizations the major limiting factor is 
the computational burden of the high performance real-
time feedback controller. FPGAs are more flexible and 
have greater advantage in handling many inputs and 
outputs, not to mention the possibilities of parallel 
computing. Nonetheless, the design and testing of FPGA 
implementations are usually more difficult and time 
consuming than in the case of DSPs. There are very few 
examples of the FPGA-based implementations of the 
magnetic levitation system controllers in the literature 
(e.g., [6], [7]). This article presents the FPGA-based 
realization of the AMB-rotor system, which can be used as 
the part of a single chip controller as well as a real-time 
plant emulator. 

The AMB-rotor system is divided into two subsystems: 
a set of two radial bearings (axial suspension is considered 
separately), which act as actuators, and the flexible rotor 
model. Before the control synthesis and its implementation 
the appropriate models for these subsystems have to be 
formed. 

II.  MODEL OF THE AMB ACTUATORS 

An eight-pole radial bearing with a differential driving 
mode is assumed. The control of the attractive forces is 
performed with the control currents icx, icy while the pre-
magnetization current i0 (bias current) is applied to all 
coils. 

A. Approximation of the force-current-characteristics 

The force-current-position characteristics of the radial 
active magnetic bearings were studied using a two-
dimensional reluctance network method [8], which took 
into account a magnetic saturation, cross coupling and 
leakage flux over the stator slots. The force versus current 
and position characteristics (for the reduced pre-
magnetization current) obtained by the RNM is depicted in 
Fig. 1. For testing the controllers we introduced the 
attractive force non-linear relation as a look-up table and 
multivariable interpolation. Consequently, the rotor model 
used together with the force-field model has a force vector 
as an input. For the purpose of control synthesis the current 
and position dependent magnetic force, in the x-axis of one 
of the magnetic bearings, can be formed as 



 
Fig. 1. Force versus current and position characteristics 
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where N, A, ζ, υ, μ0, x and x0 are the total number of coil 
turns in the electromagnet, area of the pole face, force 
acting angle, leakage factor, permeability of vacuum, 
position and air gap, respectively. Due to the differential 
driving mode the relation can be linearized in the vicinity 
of the operating point as  

( ) xkiki,xF xcxicx1x +=  (2) 

where ki and kx are the current stiffness and position 
stiffness, respectively. 

B. Approximation of the Actuator Dynamics 

The currents in the actuators are controlled by the 
internal, in regard to the external position control, current 
control loops. The proportional and feedforward 
controllers control the coils' currents. The fast current 
feedback compensates variations in the coil inductance. 
The feedforward gain compensates the effect of a resistive 
voltage drop and non-idealities in the gate drivers. For the 
simulation purposes the internal current control loop is 
modeled as a close-loop proportional and feedforward 
controlled LR-circuit with the modulation delay. The 
approximated transfer function, suitable for the position 
control synthesis, from the reference current ic to the coil 
current im is expressed as 

( ) ( )PP GRsL/Gs ++=Τ  (3) 

where GP, L and R stand for the proportional controller 
gain, coil inductance and resistance, respectively. 

III.  MODEL OF THE STUDIED ROTOR 

Studied structure is a rotor with the stacks of steel 
laminations, which are for magnetic bearings, and 
couplings on the ends of the rotor. Aluminium sleeves and 
lock nuts are used to assemble the stack of steel 
laminations. Properties of all material are presented in 
Table I. Laminations’ modulus of elasticity is assumed to 
be zero because in practice it does not carry any shearing 
stresses. Respectively, the modulus of elasticity of the 
aluminium sleeves is determined with the help of the 

experimental modal analysis that is discussed in the 
following section. The mass of the rotor is 54 kg and the 
length and largest diameter of the rotor are 1185 mm and 
85 mm, respectively. The polar and diametral mass 
moments of inertia of the rotor are 0.06 kgm2 and 7.24 
kgm2. 

A. Used Elements of the Rotor 

The rotor and the laminations under investigation are 
modeled using beam finite elements. The beam elements 
are based on the Timoshenko beam theory, which accounts 
for the shear deformation of the cross-section. Analysis of 
the rotor is concentrated on lateral vibration of the rotor 
and for this reason, axial and torsion degrees of freedom 
are neglected. In the modeling of the rotor the continuous 
elastic shaft is divided into discrete finite elements, which 
are connected at station points. The element with eight 
degree-of-freedom is assumed to be homogenous with 
distributed stiffness and mass. The cross-section of the 
shaft is assumed to be rigid. Therefore, the configuration 
of the element can be parameterized, by employing the 
centerline, as in [9]. 

The couplings on the ends of the rotor are modeled 
using rigid disc elements with four degree-of-freedom. In 
addition, the gyroscopic effect is included in the disc 
element. 

B. Equations of Motion 

Matrices that describe the complete rotor system can be 
formed using a standard assembly procedure of the finite 
element method. Equations of motion for rotor bearing 
system can be written as follows 

( ) ( )t+ + Ω + =Mq C G q Kq F&& &  (4) 

where M is the mass matrix, C viscous damping matrix, G 
gyroscopic matrix and K the stiffness matrix. Vector q is a 
vector of system’s degrees of freedom, F is a vector of 
externally applied forces and Ω is the angular velocity of 
the rotor.  

A time integration schemes can be used for solving (4). 
However, equations are coupled and the system has many 
degrees of freedom. As a result, numerical solution is time 
consuming. The number of system’s degrees of freedom 
can be reduced using modal coordinates instead of the 
nodal coordinates. This method will also lead to an 
uncoupled system of equations in case of symmetric 
positive definite matrices [10]. The normal modes are 
obtained by solving the following eigenvalue problem: 

2
k kω⎡ ⎤− =⎣ ⎦K M φ 0  (5) 

where 2
kω  and kφ  are the kth eigenvalue and eigenvector. 

TABLE I 
MATERIAL PROPERTIES 

Material Modulus of 
elasticity (GPa) 

Poisson’s ratio Shear modulus 
(GPa) 

Steel 206.0 0.30 79.2 
Aluminium 10.3 0.35 1.0 
Lamination 0.0 0.30 1.0 



As many modes as the system has degrees of freedom can 
be extracted. However, in practice, only few lowest 
frequency modes contribute significantly to the response of 
the system. Therefore, high frequency modes can be 
neglected without a significant loss of accuracy. 

In the modal reduction technique, only few lowest 
frequency modes are retained. The matrix of the normal 
modes can be obtained using nm number of eigenvectors, 
as follows: 

1 m

N N
n⎡ ⎤= ⎣ ⎦Φ φ φL . (6) 

The coordinate transformation that relates the modal 
coordinates, p, to the physical coordinates, q, is: 

=q Φp . (7) 

Equation (4) can now be written using modal coordinates 
as follows 

( ) ( )m m m m m t+ + Ω + =M p C G p K p F&& &  (8) 

where subscript m indicates modal matrix. 
Vector of modal coordinates, p, can now be solved 

using a time integration. Physical displacements can be 
solved from (7) when the modal coordinates are known. 
The number of equations is equal to the number of retained 
modal coordinates. The original system of (4) can contain 
up to 200 degrees of freedom in case of realistic industrial 
rotor. This kind of system can be usually described with 
sufficient accuracy using only 4-10 modal coordinates. 

IV.  MODAL ANALYSIS OF STUDIED ROTOR 

Modal analysis is a procedure of determining structure’s 
dynamic characteristics, i.e. the natural frequencies, 
damping ratios, and mode shapes. The key to modal 
analysis are the relationship between the applied force and 
structure’s responses. This relationship is computed as 
functions of frequency in terms of magnitude, phase and 
coherence. The required structural parameters are extracted 
from the measured frequency response functions by a 
process of curve fitting.  

In the measurements the studied rotor is hoisted up with 
flexible rubber ropes. The accelerometer position is fixed 
and the hammering point is varied, which is called a roving 
hammer procedure. Direction of impacts is in horizontal 
direction. The measurement was performed for rotor with 
stacks of steel laminations and couplings. The objective of 
modal analysis was to compare the calculated natural 
frequencies and mode shapes to the measured ones.  

The percentage differences between the measured and 
calculated frequencies and the modal damping ratios are 
presented in Table II. The differences between the 
measured and calculated modes are presented in Fig. 2, 
where a solid line indicates the calculated mode and dots 
indicate the measured points of that mode. 

Overall the results between the measured frequencies 
and calculated ones are in line. Especially the first 
calculated frequency is accurate; the difference between 
frequencies is smaller than 0.1 %. Frequencies of higher 
modes are less accurate. However, the calculated modes 
are same as measured. 

TABLE II 
MEASURED AND CALCULATED FREE-FREE FREQUENCIES OF THE ROTOR 
Mode 
# 

Calculated 
frequency 
(Hz) 

Measured 
frequency 
(Hz) 

Difference 
(%) 

Measured 
damping 
(%) 

1 193.6 193.5 0.1 0.1635 
2 402.6 397.0 1.4 0.0549 
3 762.1 767.5 0.7 0.0641 
4 1206.6 1238.0 2.6 0.1157 
 

 

 

 

 
Fig. 2. Difference between measured and calculated modes 

 
The modeled structure includes non-idealities, which 

affect the calculation. One non-ideality is friction between 
jointed components. The friction is difficult to define 
because the sleeves and the laminations are not tight fitted 
to the rotor. The most relevant non-idealities are stacks of 
steel laminations. Because of their structure, they are 
modeled without any bending stiffness at all. 

V.  LQ-CONTROL AND NON-LINEARITY COMPENSATION 

In this chapter the continuous-time models are 
considered for the sake of the clear presentation. Firstly, 
based on the equation of motion (8) the state-space model 
of the rotor is formed as in [11]. Then, adding the obtained 
rotor state-space model to the actuator and filter for the 
measured positions, we obtain an overall system model in 
a state-variable form 

BuAxx +=& , DuxCy s += , (9) 

such as 
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[ ]xC00x fm =  (11) 

where the xm represents the measured positions in the 
sensors' locations and x, u, y, ic are the vectors of state 
variables, input variables, outputs and control currents, 
respectively. The subscripts a, r and f denote relation to the 
actuator, rotor and filter, respectively. 

A. Designing the LQ position control 

At first, the feedback gains Ks and the additional 
integral feedback gains KI are computed such that the 

Mode 1; f=193.6 Hz 

Mode 2; f=402.6 Hz 

Mode 3; f=762.1 Hz 

Mode 4; f=1206.6 Hz 



state-feedback law minimizes the quadratic integral 
performance index 

[ ]dtJ TT∫
∞

+=
0

uQuxQx 21  (12) 

where the weighting matrices Q1 and Q2 are based on the 
physical constraints, i.e., using a guideline, sometimes 
called Bryson’s rules [5]. Secondly, the optimal in the 
least-square sense predictor estimator gain matrix Lp and 
the disturbance estimator gain matrix Lw are computed. 
The computation is based on the covariance matrices 
formed from the rms accuracy of the position 
measurements and control inputs. Eventually, the obtained 
state-space controller can be presented in normal state-
variable form, where the disturbance estimate vector 
w enters the system through the state estimator inputs (not 
through the control inputs) and the current estimated state 
vector x̂  is based on the current position measurements 
xm. Accordingly, let us assemble the state-space observer, 
such as 
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[ ] [ ]wxxywxxx iobiob ˆ, ==  (15) 

[ ]mcrefob xixu = , pc LAL 1−=  (16) 

where xi, x , xref describe the vectors of the integral state 
variables, predictor estimated state variables and reference 
positions, respectively. Then, we consider two variants of 
the regulator 

obregobregc uDyCi += . (17) 

The first variant is 
[ ]0KIC sreg1 −= , [ ]000Dreg1 =  (18) 

and the second one is 

[ ][ ]
[ ]1

1

−

−

−=

−−−=

rigrigreg2

foothrigrigareg2

CK00D

0KKCCK0KIC ,,,
 (19) 

where the rotor output matrix Cr is split into two parts 
[Crig, Coth] corresponding to the rigid body modes and to 
the remaining rotor state variables, respectively. The 
feedback gain matrix Ks is split into four parts [Ka, Krig, 
Ko, Kf] corresponding to the actuator, rigid rotor modes, 
other rotor state variables and filter, respectively. 

B. Designing the non-linearity compensation  

We utilized the inverse nonlinearity control method in 
order to compensate the nonlinearities in the AMB 
actuator. The method assumes that nonlinearity is 
invertible and can be undone. The compensation principle 
is presented in Fig. 3. The usage of this method for AMBs 

was studied in [12], where the analytical methods were 
employed, and in [13], [14], where a polynomial 
formulation was used. In order to compensate actuator 
nonlinearities we introduce the attractive force non-linear 
relation (into the AMB controller) as a look-up table and 
multivariable interpolation. The inverted relation (depicted 
in Fig. 4) of the aforementioned force-current 
characteristics was determined by the means of high 
polynomials fitting and stored in the appropriate table. One 
has to bear in mind, that when the compensation of the 
actuator is incorporated into the controller as the 
nonlinearity inverse approximation, the control input 
becomes force Fr instead of current ic, whereas the position 
stiffness kx and current stiffness ki are canceled out from 
the close-loop system dynamics (i.e., the position control 
has to be redesigned accordingly). 

VI.  FPGA-BASED IMPLEMENTATION 

For a discrete-time implementation a discrete 
equivalents of (9), at sampling period Ts, can be obtained 
by using a zero-order-hold (ZOH). However, before that in 
regard to a fixed-point number representation in the FPGA, 
proper per-unit values have to be derived. A per-unit (pu) 
system is the dimensionless relative value system defined 
in the terms of base values. The fundamental base values 
are selected as equal to maximum attainable physical 
values (e.g., maximum current, air gap length, etc). The 
per-unit scaling is based on the physical quantities, the 
eigenvectors in the flexible rotor model are scaled so that 
the maximum deformation of each bending mode equals 1 
(m). Finally, the general continuous-time state-space 
model (9), can be transformed as 
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Fig. 3. The compensation principles of the nonlinear actuator using the 
approximate inverse nonlinearity, where P, xr, Fr are position control, 
position reference and force reference, respectively. 

 
Fig. 4. Inverted relation of force-current-position characteristics 



where T, Tu, Ty, are the diagonal state transformation 
matrices. The transformation matrices have their diagonal 
entries based on the fundamental base values. 

The AMB actuator and the rotor model are implemented 
in the Xilinx's Virtex2Pro FPGA circuit using a hardware 
description language VHDL. The operational frequency is 
100MHz. 

A. Force-field Interpolation 

Two alternative implementations of the non-linear force 
relation are presented. The solutions are based on a spatial 
interpolation and look-up table algorithms. The algorithms 
are described as for the inverse nonlinearity interpolation. 

The first one is based on the original but sparser current 
matrix. After breaking the displacement and force into 
scaled integer and fractional parts xfrac, yfrac, the four closest 
entry current values are obtained and multiplied by the 
appropriate opposite square areas A (e.g., A11=xfracyfrac, 
A22= xfrac(1-yfrac)). The interpolated current value is the sum 
of the aforementioned multiplications. 

The second method is based on the piece-wise 
interpolation with second order surface. The piecewise 
surface coefficients are calculated by multiple regression 
method and stored in the look-up table. The result is 
obtained directly from the surface equation. The 
implementations details of the two methods are compared 
in Table III. 

B. Arithmetic Unit for the State-variable Form 

The most straightforward implementation of the 
controller or plant equations in the state-variable form 
seems to be the one, which utilizes the commercial ready-
made embedded processors (e.g. the Xilinx's MicroBlaze 
or PowerPC). However, the custom arithmetic unit has the 
advantage over the general ones, with regard to the 
balancing utilized resources, computational power and 
number format accuracy. 

For the presented LQ-control of the flexible rotor, when 
using the ZOH discrete equivalent with Ts=50μs and 
including the 8 flexible modes (4 modes in xz- and 4 
modes in yz-plane) in the state observer, a simple pipelined 
multiply-accumulate (MAC), used as the arithmetic unit is 
sufficient. The implementation details of the simple 
arithmetic unit for state-variable models are given in Table 
IV. As an example the plant model with 12 flexible modes 
in the rotor is considered. In the model only the 
coefficients not equal to zero take part in the computation. 
In addition, for those applications where more complex 
models and faster sampling rates are required, few MAC 
units can be assembled to work in parallel. Furthermore, 
the usage of the double port block RAMs enables the 
parameters update by some slower external IP core, e.g. 
embedded processor. 

VII.  TESTING THE CONTROLLERS 

The proposed LQ controllers, which feature rigid and 
flexible rotor models as a part of the observer, are tested in 
the simulations. 

TABLE III 
FPGA IMPLEMENTATION DETAILS OF FORCE-FIELD 

Interpolation method 1). Sum of Areas 2). 2nd order 
surfaces 

rms / maximum 
implementation error 0.71 / 4.12 N 0.72 / 8.88 N 

(breakpoints) × 
coefficients (30×50)×1 (30×30)×5 

latency time of 
1 / 5 interpolations 

9 / 17 
clock cycles 

10 / 50 
clock cycles 

slices / hardware 
multipliers / BRAMs 212 / 4 / 2 151 / 1 / 8 

 
TABLE IV 

IMPLEMENTATION DETAILS OF STATE-VARIABLE FORM - PLANT 
Flexible rotor model 12 flexible modes 

latency time of one cycle - ZOH 1007 clock cycles 
number format - variables / model coefficients 

/ fraction 
24-bit / 28-bit / 

22-bit 
slices / hardware multipliers / BRAMs 1078 / 4 / 6 

 

Two tests are performed. At first, the step input 
reference position (equal to 0.6 pu) to the x-axis direction, 
at sensor one (at the 4th node in Fig. 2) is applied. 
Secondly, the artificial step disturbance force is applied 
through the bearing located at the 5th node in Fig. 2). The 
measured position responses in the x-axis direction, at the 
sensor one and 1-4 modal weighting factors are examined. 
All controllers are tested with the plant model, which 
features 12 flexible modes in the presence of the 
measurement noise and process noise. 

The first tested controller includes only the rigid body 
modes in the observer, the regulator (18) and the fourth 
order sensor pre-filter, which eliminates a spillover from 
the residual modes as discussed in [15]. Its response is 
presented in Fig. 5. The applied disturbance force is equal 
to 40% of the force applied when testing the other 
controller. 

The second controller features the flexible rotor with 8 
flexible modes, the regulator (19) and the first order anti-
aliasing filter. The applied disturbance force equals to 0.6 
pu (1 pu equals the maximum achievable electromagnetic 
force in the direction of the electromagnet at the rotor 
central position with maximum current). The responses of 
two versions of this controller are presented in Fig. 6. 
Initially, the balanced weighting matrices Q1 and Q2 are 
used to slightly increase the damping of the flexible 
modes. Secondly, the scaling of the weighting matrices is 
such that the flexible modes are attenuated in expense of 
the rigid body modes. The active control of the flexible 

 
Fig. 5. Responses of first tested controller 



modes (their attenuation) can be improved significantly, 
when accurate dynamic model of the close-loop current 
actuator is used in the observer. Finally, the non-linearity 
compensation is added to the second controller. The 
comparison between the responses of the compensated and 
non-compensated close-loop control systems (the applied 
disturbance force equals 0.66 pu) is depicted in Fig. 7. 

The VHDL realization of the second controller and the 
plant emulator were validated using ModelSim simulator. 
The agreement with the corresponding Matlab simulations 
was found to be very good. 

VIII.  CONCLUSIONS 

As long as the optimal control of the studied system is 
considered, the inclusion of the flexible rotor model in the 
control design provides advantages over the rigid rotor 
model-based control (faster control therefore bigger 
disturbance forces can be tolerated, active control of the 
flexible modes). However, such a control requires accurate 
plant model, faster sampling rates and more costly control 

 

 
Fig. 6. Responses of second tested controller 

 
Fig. 7. Comparison of compensated and non-compensated control 

 
electronics, e.g. fast ADCs and increased computational 
burden. Moreover, the more complex rotor model is used 
in the observer, the more parameters vary with Ω, and 
therefore the control system is more difficult to update. 

The use of the FPGA alleviates a computationally heavy 
burden of the flexible rotor real-time implementation. 
Owing to the accurate modeling of the actuator also the 
bearing nonlinearities can be incorporated into the FPGA-
based controller. Last but not least, FPGAs deliver a 
flexibility and parallelism to implementation of demanding 
control schemes and therefore they are attractive for 
realization of the high performance AMB-rotor control 
systems. 
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