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.Abstract – The tracking solver we propose is defined
by sliding mode control theory so that the numerical
time history of the solution traces exact values.  If one
of the initial solutions is provided, the solver calculates
all solutions as parameters change from initial to final.
The solver solves linear or nonlinear equations. Here
we apply it to controller design based on several control
design strategies, i.e., direct pole placement, optimal
control, and phase adjustment.  These control design
methods mainly determine control feedback gain ane
other parameters required for closed-loop behavior of
the system.  Because this solver obtains gain and
parameters as the final condition is selected, control is
easier to design. We effectively tuned the controller of
an active magnetic bearing using this solver.

Index Terms – tracking solver, optimal control,
phase tuning, phase adjustment method, active
magnetic bearing

1. INTRODUCTION

When we solve equations using parameters, the solution at
each parameter is repeated. It is difficult, however, to
continuously identify the changing behavior of each
eigenvalue of rotor-bearing systems depending on
rotational speed, for example.
We propose a solver defined by sliding mode control
theory so that the numerical time history of the solution
traces exact values.  If one of the initial solutions is
provided, the solver calculates all solutions as the
parameter changes from initial to final. The solver solves
linear or nonlinear equations.
Here we apply the solver to controller design based on
several control design strategies, i.e.[1], direct pole
placement, optimal control, and phase adjustment. These
control design methods mainly determine control feedback
gain and other parameters needed for closed-loop behavior
of the system.  Because the solver obtains gain and
parameters as the final condition is selected, the control
system is easier to design. We effectively tuned the
controller of an active magnetic bearing (AMB) using this
solver.

2. TRACKING SOLVER

                                                          
.

The tracking solver method is detailed below[2]. The
solution, ( )τλ , is controlled by the following equation:

  u=)(τλ& (1)

  We define control force u by a switching function
dependent on the error of the output variable on answer
planes. Error is written as follows:

  ),( τλσ f= (2)
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  If we select this difference to satisfy the following
equation,

  σσσ 21 )sign( gg −−=& (4)

     where ( ) θσ je≡sign   ( θσσ je= ) and
                1g , 2g : high gains

 control force is determined by assuming extremely high
gains as follows:
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    Combining Equation (1) and Equation (5) provides a
possible method for the continuous solution ( )τλ .

3. CHARACTERISTIC EQUATION

The second-order example equation is as follows:

  0)1(),( 222 =+−= jtettf λλ (6)

and we have two answers, jtet )1( +±=λ .  When we
apply this solver to Equation (6), the result is as shown in



Figure 1. Each root depending upon the initial condition,
1)0( ±=λ , is continuously tracked. In our experience, the

selection of improper gains 1g  and 2g  induced the
divergence in numerical integration. Case studies in
Section 4 chose preferable gains of 101 =g to 210  and

4
2 10=g  to 610 .

Note:  . exact approximate
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Figure 1. Solution of tracking solver

4. APPLICATION TO CONTROLLER DESIGN

  The common state space equation and control vector are
expressed as follows:

BuAxx +=& (7)
Fxu =

  The controller uses the tracking solver based on several
design strategies.

4.1 Direct Pole Placement

Pole placement is done mathematically using a state space
representation of the open system and calculating feedback
matrix F  assigning poles to the desired positions.  This
paper deals with the following system[3]:

















−
−

−
=

210
131
012

A , 















=

0
0
1

B , 















=

3

2

1

f
f
f

Fb  (8)

  The feedback control loop is constructed to assign poles
of a closed-loop system to positions -4 (multiple pole).
Eigenvalues of A  are { }4,2,10 −−−=iλ  (i=1,2,3) and
are used by initial values of the tracking solver to satisfy
the following equation:

BFAsIchr +−= det (9)

  Eigenvalues of A  are { }4,2,10 −−−=iλ (i=1,2,3) and
are used by initial values of the tracking solver to satisfy
the following equation:
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  Error is written as follows:

=1σ the coefficient of 2s in F
=2σ the coefficient of s in F (11)
=3σ the constant term in F

  If 0321 === σσσ , Equation (10) is satisfied. Figure 2
shows continuous feed back gain, when τ  is increased
from 0 to 1.0.  The desired solution is as follows:

{ }tF 0.130.90.5=    ( 0.1=τ  ) (12)

  Eigenvalues ( )( ) 0.40.1 −== is λ (multiple poles) are
confirmed.
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Figure 2 Solutions of pole placement strategy.

4.2 Optimal control

  The optimal regulator of the following system is designed
to minimize cost functional Equation (14)
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  The control vector is expressed as follows:

  PxBRFxu t1−−== (15)

 P  is the solution of the Ricatti equation[3].
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(16)
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Q  and 1=R , the Ricatti equation is

replaced by the following equation to apply the tracking
solver:
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  Errors and P  are written as follows:
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  When 0=τ , ( ) 00, =+= PAPAf tλ .  Therefore, the
    initial value is written as follows:
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  Figure 3 shows the continuous solution λ , when τ
increases from 0 to 1.0.  The desired solution is as follows:
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  Control gain is obtained as follows:

  ( )tt PBRF 0.10.11 =−= − (20)
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Figure 3 Solutions of optimal control strategy.

5. APPLICATION FOR PHASE ADJUSTMENT

Figure 4(a) shows the 2-degree-of-freedom system that is a
reduced model of an AMB, expressed as follows:
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The transfer function of the controller is a phase lead
circuit as follows:
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   where 0.1=g , 5.0=α  and 5.1=τ
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Figure 4  2 DOF system

Figure 4(b) shows the Bode plot of the controller and
Figure 5 shows the Bode plot of the open loop transfer
function as follows:

  ( ) ( ) ( )sGsGsG rpo = (23)
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Figure 5 Open loop transfer function of 2 DOF system

To adjust phase and gain, parameters τα ,  and g  of
controller transfer function rG are tuned. The phase lead

2φ =9 at zero cross frequency 2ω =4.2 is so small.  We
tuned parameters so that phase lead 2φ equals 19 (deg).
Parameters are determined by the tracking solver. The
equation is expressed by the following equation to apply
the tracking solver:

  ( ) ( ) tjGf o ×−= 1Abs, 111 ωτλ (24)

  ( ) ( ) tjGf o ×−= 1Abs, 422 λτλ (25)

  ( ) ( )( ) tjGArgf o (deg)19, 133 −= ωτλ (26)

  ( ) ( )( )tjGArgf o (deg)19, 444 −= λτλ (27)

 where ( ) ( )tgt =1λ , ( ) ( )tt αλ =2 , ( ) ( )tt τλ =3

( ) ( )tt 24 ωλ =  and 07.11 =ω
Equations (24) and (25) are the condition where gains are
0(dB) at zero cross frequency 1ω and 2ω . Equation (26) and
(27)  are the condition where phase 1φ  and 2φ  equal 19
(deg) at zero cross frequency 1ω and 2ω .
  Errors are written as follows:



  ( )tf iii ,λσ = (28)
    where 4,3,2,1=i

  Initial values are written as follows:

  { }(rad/s)2.4,0,0,0=iλ (29)

  Figure 6 shows continuous solution λ , when t  increases
from 0 to 1.0.  Controller parameters are obtained as
follows:
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Figure 7 shows the Bode plot of the open loop transfer
function after tuning. The phase lead 2φ at 2ω  is lager than
before tuning.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0
0.0

τ1

α1

g1
1.24

ω 2
10

0.65

0.41
4.4(rad/s)

τ 1
α

1
g 1

ω
2

1
0

t

a
n
d

Figure 6 Controller parameters
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6. APPLICATION TO AMB CONTROLLER

6.1 AMB system

Figure 8 gives an overview of the experimental system[4].
The purpose of the three disks at the center and two edge
plates of the flexible rotor is to attach rotor correction
weights.  The disk at the far left is the motor rotor, and the
one at the far right is the thrust AMB rotor.  The span of
the left and right radial AMBs is 1195 mm.  Specifications
of the flexible rotor are shown in Table 1.

Table 1 Rotor specifications
Mass (kg) 31.4

Diameter, span (mm) 37, 1316
Material SUS 304

Rated speed (rps) 250

Motor

Radial AMB

Thrust AMB

Radial AMB

Vacuum Chamber Flexible Rotor

non-contact, Gap=0.3mm

28
0
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111111 1

10.820.52
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-0.47
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Figure 8 Experimental system and vibration mode
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AMBs are controlled digitally by a digital signal processor
(DSP).  Figure 9 shows a block diagram of the controller
of the flexible rotor – AMB.  The flexible rotor is
symmetrical longitudinally, so the model is controlled by
the separation of the translating system and the tilter,



where the translating system is Nc1, Nc3, Nc5... and the
tilting system is Nc2, Nc4,
Nc6... .  The left and right sensor signals captured by the
DSP are separated into signals in the translating system
and the tilting system through calculation.  Signals are
calculated at each controller to produce each control
output.  Each output is sent to the left and right AMBs ny
repeating calculation. Transfer functions of controllers are
as follows:

  ( ) ( ) ( )sGsGsG NFPIDrp ×= 1 (31)

  ( ) ( ) ( ) ( )sGsGsGsG LPFPSFPIDrt 22 ××= (32)
       

6.2 Unstable vibration

Figure 10 shows the resonance curve up to 260 rps[5].
Amplitude is suppressed by balancing at each mode.
However, at 260 rps, a sharp increase in the vibration
amplitude is observed at 147 Hz in Figure 11.
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Figure 11 Unstable vibration

The Nc4 backward natural frequency is the probable cause
of unstable vibration in the rotational test.  Figure 12
shows rotor speed and natural frequency at Nc4.  When
rotational speed is increased, the natural frequency is
separated into two frequencies, called forward and
backward natural frequencies.  With the measurement of
the backward natural frequency with reduced frequency,
we found that the natural frequency of 150 Hz is at 250 rps
and falls to 140 Hz at the rated speed of 350 rps.
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6.3 Tuning the controller of tilting system

 To prevent this unstable vibration, improvements are
made to the tilting system controller that controls the
second natural bending frequency.  Figure 13(a) shows the
tilting controller that causes unstable vibration.  Phase lag
occurs at frequencies below 147 Hz, then the frequency at
which the phase is reversed is changed from 147.5 Hz to
137.5 Hz to provide a phase lead at frequencies above 137
Hz in Figure 13(b).
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Figure 13 Controller of tilting system

Parameters of the tilting system controller are determined
by the tracking solver. The controller transfer function is
expressed as follows:

( ) ( ) ( ) ( )sGsGsGsG LPFPSFPIDrt 22 ××= (32)
  where
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To adjust phase and gain near 140 Hz, the
parameters 3,τα and 4τ  of 2PIDG and PSFG are tuned. The
equation is expressed by the following equation to apply
the tracking solver:

  ( ) ( )111 , ωλ jGArgtf o= (33)

  ( ) ( ) (deg)180, 221 −= ωλ jGArgtf o (34)

  ( ) ( )333 , ωλ jGArgtf o= (35)
     where 751 =ω (Hz), ( )t1471451452 −−=ω
               2222 =ω (Hz)

αλ =1 ,
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2 2
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τπ
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3 2
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 Equation (33) is the condition in which frequency 1ω
where the phase is 0 degrees is not changed at 75 Hz.   
Equation (34) is the condition in which frequency 2ω
where the phase is 180 degree is changed from 147 Hz to
137 Hz.  Equation (35) is the condition in which frequency

3ω where the phase is 0 degree is not changed at 222(Hz).
  Errors are written as follows:

  ( )tf iii ,λσ = (36)
    where 3,2,1=i

  Initial values are written as follows:

  { }163,123,37.0=iλ (37)

  Figure 2 shows continuous solution λ , when τ  increases
from 0 to 1.0.  The desired solution is as follows:

  1372 =ω (38)

  Controller parameters are obtained as follows:

  { }153,113,31.0=iλ (39)
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Figure 14 Parameters of tilting controller

After parameters were tuned, the rotational test was done.
Figure 15 shows the resonance curve of the rotational test.
The rotational speed passes the third critical bending speed
Nc5.

150

100

50

0 20015010050
Rotational speed (rps)

0

A
m

pl
itu

de
  (

µm
 p

-p
)

NC1

NC2

250

NC5 Balance

NC3

NC4

A

C

300

NC5

Figure 15 Resonance curve

7. CONCLUSIONS

  We have applied our proposed tracking solver to
controller design as follows:
   
1) The solver was been applied to controller design based
on several control design strategies, i.e., direct pole
placement, optimal control, and phase adjustment.
2) We tuned the controller of an AMB using this method
and designed a stable system for rotation.
3) The rotational speed safely passed the third critical
bending speed.
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