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Abstract— In this paper, a nonlinear observer-based state
feedback is derived to achieve precision tracking of a rotating
shaft supported by active magnetic bearings (AMBs). Velocity
and disturbance observers are constructed which operate in
a hierarchical manner. This approach reduces the order of
the design and modularizes compensation for synchronous
vibration. Experimental results on a commercially available
five degree-of-freedom system demonstrate accurate position
tracking over the bearing air gap.

Index Terms— Nonlinear control, nonlinear observers, dis-
turbance, vibration control.

I. I NTRODUCTION

Control of AMBs is often based on a variation of
Proportional-Derivative or state feedback. Such control
schemes are easy to implement and provide sufficient
performance for many applications requiring setpoint reg-
ulation [1]. Advances in control technology have enabled
more complex strategies which can accomplish precise
positioning of high speed rotating shafts. This have been
motivated in part by industrial applications related to non-
circular boring [2], [3], [4]. These applications require a
sophisticated controller capable of vibration attenuation and
trajectory tracking. The development of a control strategy
that can satisfy these two objectives is the focus of this
paper.

Vibration synchronous with the speed of rotation results
primarily from mass unbalance, and is an obstacle to
precise rotor positioning. Although mechanical balancing
of the shaft can attenuate this effect, additional control
action is required to further suppress it. Precision tracking
control requires a synchronous position reduction method,
which achieves forced rotation about the geometric axis by
compensation of the harmonic unbalance forces. Existing
solutions can often neglect AMB nonlinearity when the
control objective is setpoint regulation and the coils are
premagnetized. However, such designs based on linear
approximate models may be too conservative when the
objective is to track the shaft over a significant portion
of the air gap [5]. To overcome this limitation, we design
a nonlinear observer-based control treating synchronous
vibration as a harmonic disturbance to be estimated. In
this manner, we also compensate for model bias by esti-
mation of a constant disturbance. Disturbance observers
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have been considered previously and incorporated into
linear [6], sliding mode [7] and flatness-based [4] control
designs. These proposed observers are usually high order
(containing5 to 10 states) and cannot decouple harmonic
disturbance estimation and compensation from the rest of
the controller. This decoupling is an asset for practical
AMB systems because they operate in multiple stages (e.g.
levitation, run-up, run-down) during which our modeling
assumption of constant shaft speed may be invalid. As
a result, cancelation of harmonic disturbances may be
ineffective. Hence, to achieve low-order and modularity,
we propose a hierarchical observer design. A reduced-
order observer is constructed to estimate disturbances based
on the availability of position and velocity. Velocity is
estimated by an inner-loop observer with error dynamics
that converge at a faster rate. We propose this design in the
framework of a flatness-based tracking control.
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Fig. 1. Shaft assembly, motor coupling and radial bearing stators for a
five DOF magnetic bearing system.

The AMB system under consideration was manufactured
by SKF Magnetic Bearings Inc. (Calgary, AB) and is
intended for testing control methodologies under no-load
operation. The system offers several horizontal shaft con-
figurations, and for the following work, a305 mm (12′′)
long, five DOF shaft assembly is chosen. Fig. 1 shows a
CAD diagram of the shaft assembly with radial bearing sta-
tors. The assembly consists of a9.5 mm (3/8′′) diameter
shaft upon which are mounted two radial bearing rotors and
an axial bearing disk. The assembly was determined to have



negligible gyroscopic effects. The shaft is coupled to a DC
motor by a flexible coupling. The system has a specified
range of shaft speed of2, 000−10, 000 rpm. Some bearing
specifications are provided in Table I.

Specification radial bearing axial bearing
static load cap. 76 N 205 N

saturation current 3.0 A 2.8 A
nominal gap 525 µm 783 µm

stator ID 35.1 mm 38.6 mm
stator OD 82.8 mm 71.4 mm

stator length 12.7 mm 13.5 mm
rotor OD 34.3 mm 66.0 mm

TABLE I

MAGNETIC BEARING SPECIFICATIONS

A modular dSPACE hardware system is used for control
implementation. Inner-loop current control and outer-loop
tracking control calculations are managed by the DSP
board at a rate of20 kHz. Three 16-bit ADC boards sample
ten coil currents and rotor displacement along five axes.
A digital output board generates PWM voltage waveforms
for the drive circuitry. The coils are driven by custom-
built power electronics. They consist of10 H-bridges which
deliver a maximum of3 A output current per channel at
48 V. The switching frequency of the PWM amplifiers is
20 kHz.

III. M ODEL DESCRIPTION
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Fig. 2. Cross section of Figure 1 in thex − y plane. Motor coupling
not shown.

A standard nonlinear dynamic model is chosen as the
basis for tracking control design. This model assumes a
rigid shaft assembly. The dynamics equations are

mẍ = Fx (1a)

mÿ = Fo,y + Fi,y + Fc,y +Dc,y +Dh,y (1b)

mz̈ = Fo,z + Fi,z + Fc,z +Dc,z +Dh,z (1c)

Jψ̈ = li,aFi,z − lo,aFo,z + lcFc,z + τc,ψ + τh,ψ (1d)

Jθ̈ = lo,aFo,y − li,aFi,y − lcFc,y + τc,θ + τh,θ. (1e)

The variablesx, y, z, ψ, θ represent the coordinates of the
center of masscm of the shaft relative to an inertial frame
with origin O. The parametersm andJ denote the mass
and transverse moment of inertia, respectively. Parameters
lo,a, li,a are the distances from the outboard (subscript
o) and inboard (subscripti) radial bearing stators tocm,
and it is assumed thatlo,a, li,a ≫ x. Similarly, lo,s, li,s
denote the distances fromcm to the outboard and inboard
measurement planes. The distancelc separates the motor
coupling andcm, andFc,y/z1 represent the linear spring
forces resulting from deflection of the motor coupling. The
spring force expressions are given by

Fc,y = −K(y − lcθ), Fc,z = −K(z + lcψ). (2)

The five magnetic bearing forcesFx, Fi/o,y/z are each the
sum of two forces from opposing coils which are denoted
by their positive (subscriptp) and negative (subscriptn)
components, see Fig. 1. The bearing force model is based
on a horseshoe stator approximation and is given by the
expression

Fi/o,y/z = Fi/o,y/z,p − Fi/o,y/z,n

=
βi2i/o,y/z,p

(κ− ξi/o,y/z)2
−

βi2i/o,y/z,n

(κ+ ξi/o,y/z)2
(3)

for nominal air gapκ and force constantβ. The control
inputs are the coil currents denoted byii/o,y/z,p/n. The
variablesξi/o,y/z represent displacement of the radial rotors
from the magnetic center. They are uniquely related to
x, y, z, ψ, θ by the geometric relations

ξo,y = y + lo,aθ + σo,y, ξo,z = z − lo,aψ + σo,z

ξi,y = y − li,aθ + σi,y, ξi,z = z + li,aψ + σi,z .
(4)

whereσi/o,y/z are magnetic offsets [13]. Mass unbalance
enters the dynamics (1) as harmonic disturbance forces
Dh,y/z and torquesτh,ψ/θ. Model bias and gravity are
accounted for by constant disturbance forcesDc,y/z and
torquesτc,ψ/θ. These disturbances are governed by the
dynamics

Ḋc,y/z = 0, D̈h,y/z = −ω2Dh,y/z

τ̇c,ψ/θ = 0, τ̈h,ψ/θ = −ω2τh,ψ/θ.
(5)

where ω denotes constant shaft speed. The shaft speed
and ten coil currents gives the system eleven inputs. The
system’s outputs are the rotor displacement along five
axes:Z12 is the disk displacement along thex-axis, and
V13, V24,W13,W24 represent the displacement of the radial
rotors along they- andz-axes in the planes of measurement
x = lo,s and x = −li,s. The coordinatesx, y, z, ψ, θ
can be approximately recovered from the measurements
Z12, V13, V24,W13,W24 by the relations

θ =
(W24 −W13)

lo,s + li,s
, ψ =

(V13 − V24)

lo,s + li,s

x = Z12, y = W13 + li,sθ, z = V24 + lo,sψ.

(6)

Table II provides values for all model parameters.

1The termFc,y/z is compact notation that stands forFc,y, Fc,z.



Param. Value Param. Value
li,s 0.078 m lo,s 0.100 m
li,a 0.097 m lo,a 0.081 m
lc 0.155 m K 1200 N/m
Jx 1.71 · 10−4 kgm2 J 5.84 · 10−3 kgm2

β 1.0 · 10−6 Nm2/A2 βx 5.0 · 10−6 Nm2/A2

κ 5.25 · 10−4 m κx 7.83 · 10−4 m
m 0.98 kg

TABLE II

MODEL PARAMETERS

IV. FLATNESS-BASED TRAJECTORYTRACKING

The differential flatness [8] property of system (1) leads
to a convenient design method for a nonlinear tracking
controller [9], [10]. This flatness-based control is presented
here in two steps. For the first step we design a control with
bearing force as the input. In the second step we construct
the control current based on the force control.

A. Force Control

For thex−y plane subsystem (1b), (1e) we define a flat
output(y, θ) and assumeFi/o,y to be inputs. The feedback

Fi/o,y =
mlo/i,aηy ∓ Jηθ − (lo/i,a ± lc)Fc,y

lo,a + li,a
+F dist

i/o,y

(7)

where F dist
i/o,y represents the disturbance compensating

forces

F dist
i/o,y =

−lo/i,a(Dc,y +Dh,y) ± (τc,θ + τh,θ)

li,a + lo,a

gives the chains of integrators

ÿ = ηy , θ̈ = ηθ

whereηy andηθ represent auxiliary control variables. For
the y coordinate, the auxiliary control

ηy = ÿr − k2(ẏ − ẏr) − k1(y − yr) (8)

gives stable tracking error dynamics for controller gains
k1, k2 > 0, whereyr is a reference trajectory at least twice
differentiable with respect to time.

B. Current Control

Determining the control currentsii/o,y,p/n from the force
feedback references (7) is equivalent to inverting the force
relations (3). This inversion is non-unique for the following
reasons:

1) the force-current relation in (3) is quadratic, and
2) the number of independently controlled coils (ten)

exceeds the number of force components generated
(five).

Solutions to this problem based on performance and power
efficiency criteria have been extensively studied [11]. We
adopt the widely applied constant current sum biasing
scheme to maximize the force slew rate available to the
bearing actuators [12]. Low- and zero-bias designs, which
are common among nonlinear control schemes, have the

potential to limit the dynamic response of the controller
if voltage limits are not sufficiently high [13]. Hence
the bearing force model (3), dropping subscripts, is re-
expressed as

F =
β(ib + ∆i)2

(κ− ξ)2
− β(ib − ∆i)2

(κ+ ξ)2
(9)

where ib and ∆i are the bias and differential currents
respectively. Inversion of (9) yields [10]

∆i =

{
−β(ξ2+κ2)ib−β(ξ2−κ2)

√
Fξκ/β+i2

b

2ξβκ ξ 6= 0

Fκ2/(4βib) ξ = 0.
(10)

The case forξ = 0 is determined by applying l’Hôpital’s
Rule. To ensure a non-negative discriminant in (10), it is
sufficient to impose the limits

− 4βi2b
(κ+ ξ)2

≤ F ≤ 4βi2b
(κ− ξ)2

which are obtained by restricting|∆i| ≤ ib. Since each
coil is limited by a saturation currentIs, peak force and
maximum slew rate are obtained by settingib = Is/2.

V. H IERARCHICAL OBSERVERDESIGN

The control law (7) requires knowledge of position,
velocity, and constant and harmonic disturbances. Since
position is the only available measurement, we reconstruct
estimates of velocity and disturbances by state observers.
To jointly estimate velocity and disturbances would require
a fifth order observer for each DOF. As an alternative
approach, we propose a reduced-order disturbance observer
based on the assumption that position and velocity are
available. Then, we design an inner-loop velocity observer
with error dynamics that is sufficiently faster than that of
the disturbance observer.

A. Velocity Observer

We present the case for they coordinate by a procedure
that can be applied in a similar manner to each DOF.
Ignoring constant and harmonic disturbances, we consider
the simplified dynamics

mÿ = Fo,y + Fi,y + Fc,y

as the basis for an observer which estimates the time deriva-
tive of y. We define the accelerationay(∆ii/o,y, x, y, θ) =
(Fo,y + Fi,y + Fc,y)/m which accounts for the spring
coupling (2), and the nonlinearity of the bearing force
relation (3), and is only a function of input and output.
Estimates of displacement̂y and velocityv̂y are obtained
with the observer(

˙̂y
˙̂vy

)
=

(
0 1
0 0

) (
ŷ
v̂y

)
+

(
0
1

)
ay +

(
ℓ1
ℓ2

)
(y − ŷ) (11)

for observer gainsℓ1, ℓ2 > 0. Next, we show a sufficiently
accurate estimate in the presence of bounded disturbances
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Fig. 3. Comparison of observer-based to numerically differentiated
estimates ofẏ.

can be obtained. We define the estimation error vectorζ =
(y − ŷ, ẏ − v̂y)

T and have error dynamics

ζ̇ =

(
−ℓ1 1
−ℓ2 0

)
︸ ︷︷ ︸

Ā

ζ +

(
0
1
m

)
︸ ︷︷ ︸
B̄

Dy (12)

whereDy = Dc,y+Dh,y and we have assumed the bound
|Dy| 6 D̄. From the solution of (12) we have

ζ(t) = V −1(λ)eΛtV (λ)ζ(0)

+

∫ t

0

V −1(λ)eΛ(t−τ)V (λ)B̄Dy(τ)dτ.
(13)

where Λ = diag[λ1, λ2] = V ĀV −1, λ2 < λ1 < 0
andV (λ) is a Vandemonde matrix. Taking the norm and
computing an upper bound gives

‖ζ(t)‖ 6 ‖V −1(λ)‖
[
eλ1t‖V (λ)ζ(0)‖ +

√
2D̄

m|λ1|
(1 − eλ1t)

]

We take the limit to obtain a bound on the asymptotic error

lim
t→∞

‖ζ(t)‖ 6

√
2D̄

m|λ1|
‖V −1(λ)‖. (14)

There existsλ1, λ2 such that (14) can made arbitrarily
small. For example,λ1 = −w, λ2 = −w2, w > 0 results
in limw→∞ ‖V −1(−w,−w2)‖/|−w| = 0. To demonstrate
the effectiveness of the observer (11), Fig. 3 compares the
observed velocitŷvy to a numerical differentiation ofy
at a rotational speed of8, 000 rpm. The eigenvalues for
the observer are−3500 and−4500. It is shown that the
observer readily filters out high frequency noise.

B. Disturbance Observer

A reduced-order observer is constructed to obtain con-
stant and harmonic disturbance estimates based on knowl-
edge of position, velocity, and current, and without sim-
plification of the dynamic equations. For they subsystem,

the observer is
ż1ż2
ż3


 =


−h1 −h1 0
−h2 −h2 1
−h3 −(h3 + ω2) 0





z1z2
z3




−


 h2

1 + h1h2 h1

h1h2 + h2
2 − h3 h2

h1h3 + h2(h3 + ω2) h3


(

mv̂y
may(∆ii/o,y, x, y, θ)

)
(
D̂c,y

D̂h,y

)
=

(
z1
z2

)
+

(
h1

h2

)
mv̂y

(15)
where hi, 1 6 i 6 3 are observer gains. Defin-
ing Dv,y = Ḋh,y and the estimation error vector as
(D̃c,y, D̃h,y, D̃v,y)

T = (Dc,y − D̂c,y, Dh,y − D̂h,y, Dv,y −
D̂v,y)

T , we have the error dynamics


˙̃Dc,y

˙̃Dh,y

˙̃Dv,y


 =


−h1 −h1 0
−h2 −h2 1
−h3 −(h3 + ω2) 0





D̃c,y

D̃h,y

D̃v,y




+


h1

h2

h3


m ˙̃vy. (16)

From (16) it is apparent that error in the velocity estimate
ṽy enters the disturbance error system as a forcem ˙̃vy. To
see the effect this has on disturbance estimates, we know
from (12) that̃vy , in steady state, is a signal with a constant
and harmonic component so thatṽy(t) = ṽdc+ṽac sin(ωt+
ϕ). Hence ˙̃vy(t) = ωṽac cos(ωt + ϕ) in steady state.
Next, consider the transfer matrixG with input m ˙̃vy and
output (D̃c,y, D̃h,y). Calculating the magnitude ofG(s)
at the synchronous frequencys = jω gives |G(jω)| =
(0 1)T which implies that limt→∞ |D̃c,y(t)| = 0 and
limt→∞ |D̃h,y(t)| 6 |mωṽac|. We can control the bound
on |D̃h,y(t)| sinceṽac can be made arbitrarily small by the
choice of eigenvalues for the velocity observer.

For a givenω and a desired characteristic polynomial
s3 +λ2s

2 +λ1s+λ0 = 0 for the error dynamics (16), the
observer gains are given by

h1 =
λ0

ω2
, h2 = λ2 −

λ0

ω2
, h3 = λ1 − ω2.

Fig. 4 gives a block diagram of the closed loop system
showing the cascade structure of the observers.

VI. EXPERIMENTAL RESULTS

Experiments were performed to evaluate the perfor-
mance of the proposed control scheme on a rotating shaft.
It is important to note that shaft unbalance is significant
for these experiments since the shaft is manually assembled
and no balancing was performed, such as by mounting bal-
ance disks. Coils are biased at1 A and eigenvalues of the
tracking error dynamics are−200± 400i. The eigenvalues
of the disturbance observer are−55 and−250±850i at the
maximum shaft speed. Eigenvalues for the disturbance ob-
server must be scheduled according to shaft speed to ensure
a sufficiently high signal-to-noise ratio of the disturbance
estimates.
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(ŷ, v̂y)

disturbance
observer

(D̂c,y , D̂h,y ...)

disturbance
comp.

(F dist
i,y , F dist

o,y )

Fig. 4. Schematic of the closed loop system for they coordinate.

A. Disturbance Rejection

For this experiment all reference trajectories were set
to zero. Fig. 5 shows the outboard rotor orbital and coil
currents during engagement of disturbance compensation
at 10, 000 rpm. In steady state the rotor measurements
V13, V24,W13,W24 are each constrained to an envelope
of ±1 µm centered about the origin. Fig. 5 shows spikes
in the differential coil currents∆io,y/z which indicate
the high initial forces necessary to compensate for the
harmonic disturbances. This figure shows that all available
signal headroom has been used since the differential current
peaks at the same magnitude as the bias current. Therefore,
much greater unbalance forces cannot be tolerated by the
control. After the transient, more efficient operation is
apparent in the reduction of the synchronous component
of the coil currents. Fig. 6 demonstrates the variation in
harmonic disturbance attenuation according to shaft speed.
A comparison of the vibration amplitude is made with
and without disturbance compensation. We see from these
results that in the worst case there is greater than90%
reduction in synchronous vibration and at best greater
than 95% reduction. This additional control significantly
improves the positioning of the shaft and increases the
bearing clearances within which to track trajectories.

B. Trajectory Tracking

We demonstrate tracking with a trajectory that moves the
center of masscm from the origin onto a2.0 Hz elliptical
orbit in a timet = 1 s:

yr(t) = 90 · (r(t) − r(t− 1)) · sin(4πt) µm

zr(t) = 40 · (r(t) − r(t− 1)) · cos(4πt) µm

xr(t) = θr(t) = ψr(t) = 0 µm.

(17)

wherer(t) is a unit ramp function. Tracking performance
in the outboard measurement plane is shown in Fig. 7
at 10, 000 rpm. The orbital plot shows sufficiently good
disturbance rejection to move the rotor over a large fraction
of the available air gap (the system’s nominal alarm setting
for the radial bearings is100 µm). Consistent tracking
performance is also observed: the tracking error is less than
about ±2.5 µm. The tracking accuracy mainly depends

on how well the shaft angular displacementsψ, θ can be
stabilized. To this end, the main difficulty is compensation
for the motor coupling which has a strong influence on
the inboard radial bearing. The approximate linear spring
model (2) was tuned online to achieve optimal perfor-
mance. An AMB system with an inline motor would likely
reduce tracking error.

VII. C ONCLUSIONS

This paper has presented a nonlinear observer-based state
feedback to track the motion of a rotating shaft. A hierar-
chical observer structure is proposed to simplify the overall
design and to modularize compensation for synchronous
vibration. Accurate positioning over the bearing air gap
is demonstrated on a commercially available five DOF
system.
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