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Abstract— Wavelet analysis provides a method of identify-
ing localised time-frequency components within a vibratory
signal. It also has direct links with digital signal processing.
This paper focuses on the use of wavelet analysis within ro-
tor/active magnetic bearing systems for fault detection, system
identification and closed loop transient control. The closed
loop controller is formulated in the wavelet coefficient domain
using real-time evaluation of the wavelet transform, which
involves a signal processing delay. The controller is designed to
mimimise the wavelet coefficients of measured rotor vibration
signals. Hence, this implies that the rotor vibration will be
attenuated by the control action. Experimental results are
presented to show how control in the wavelet coefficient
domain is effective in attenuating transient rotor vibration
arising from step synchronous input forces.

Index Terms— Wavelet analysis, Transient response, Rotor
vibration attenuation, Fault detection.

I. INTRODUCTION

Wavelet analysis has been used in a wide variety of ap-
plications exploiting its localisation characteristics. These
include image processing [1], [2], neural networks [3],
ultrasound [4], de-noising [5], [6], communication theory
[7] and vibration analysis [8], [9], [10]. The use of wavelet
analysis in signal de-noising is in many ways similar to the
open-loop control techniques used for synchronous rotor
vibration control. The initial signal is decomposed into its
frequency elements, or wavelet coefficients, upon which
a decision is made in order to achieve a desired output
signal. Threshold techniques of de-noising are among the
most common used. Here a signal is decomposed using a
discrete wavelet transform, then the smaller noise related
coefficients are removed according to a threshold criterion
(Frodor et al. [6] and Donoho [5]).

Newland [8], [11] proposes a method for analysing
a recorded vibratory signal with wavelets leading to an
analysis technique involving wavelet maps. It was indicated
that the wavelet transform would allow for the detection
of small details in a waveform that may otherwise go
unnoticed. Wavelet maps of the analysed signal allow for
immediate identification of any signal perturbations, while
the Fourier transform of the same signal may not. Wavelet
analysis is therefore a significant tool for the analysis of
time varying signals. However, the methods presented by
Newland are limited to post event analysis rather than for
use in real-time applications. It is also worth noting that

the harmonic wavelets developed have a magnitude over all
time. Harmonic wavelets are also useful because of their
close relation to the Fast Fourier Transform algorithm.

Harmonic wavelets were also used by Chancey et al.
[9], [12] as a means of studying and characterising rotor
dynamic vibrations. The technique uses the frequency
banding capabilities of the harmonic wavelet. This forms an
analysis providing good representation of a specific octave
dependent frequency. If the frequency band contains only a
single significant frequency then the growth function of that
particular frequency can be extracted. Chancey and Flowers
[9] propose that, from the growth function identification of
the modal damping, the characterisation of faults is possible
from transient data.

Staszewski [10], [13] makes use of the continuous
wavelet transform in identifying the damping characteris-
tics of multi-degree-of-freedom systems. Three techniques
are outlined. The simplest is a cross-section of the con-
tinuous wavelet transform (CWT) along a fixed pseudo
frequency. This provides a measure of the damping from
the change in magnitude of a wavelet coefficient. An
impulse response recovery method and the ”Ridges and
Skeleton” method are also presented. This is used further
by Staszewski in the identification of non-linear systems
[13].

Wavelet analysis has further been used to identify fault
conditions in a variety of rotating machinery components
including rolling element bearings [14], gear boxes [15],
cracked [16] and misaligned [17] rotors. Lin and Qu
[18] use the Morlet wavelet to extract features from the
measured vibration of a gear-box to identify the magnitude
and position of gear damage. Boulahbal et al. [19] identify
cracks in geared systems from measured vibrations and off-
line analysis using amplitude and phase wavelet maps.

Wavelets are not only limited to signal processing in off-
line techniques, they are increasingly being considered for
real-time systems. The use of wavelets as basis functions
in a network is presented by Zhang and Benveniste [20].
This is further utilised by Lin and Huang [21] who propose
an on-line approach to the control of a servomotor by
realising wavelet based network-learning. The disturbance
rejection of repetitive and rapidly varying features is a
natural basis for wavelets and is utilised by the learning
network. This method may exploit many of the attributes
of wavelet analysis, however, it takes no account of the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic diagram of experimental flexible rotor/active magnetic
bearing rig.

digital implementation and signal processing required.
A method of control acting directly on the wavelet coeffi-

cients as gains is proposed by Parvez and Goa [22]. A gen-
eralised proportional-integral-differential (PID) controller
is derived from feedback of scaled wavelet coefficients. The
multiple tuneable parameters (each for a wavelet coefficient
level) offer advantages over PID control, however, steady
state error will always be present since a wavelet of infinite
time duration would be required. Zhou et al. [23] use
a method of wavelet weighted residuals to determine a
control signal for piezoelectric sensor plates.

This paper presents a overview of research undertaken
to utilise wavelet analysis in the closed loop control of
rotor/active magnetic bearing systems. This includes fault
detection, system dynamics and closed loop control in the
wavelet coefficient domain.

II. WAVELET ANALYSIS

A mother wavelet ψ (t) has zero mean and compact
support (finite non-zero range). Given a time signal, f(t),
wavelet analysis allows a multi-resolution time-frequency
decomposition in the form

c(a, b) = |a|−1/2

∫ ∞

−∞
f(t)ψ

(
t− b

a

)
dt (1)

where the variables a and b correspond to the translation
and dilation of the wavelet respectively.

Strang and Nguyen [24] show how discrete wavelet
coefficients can be obtained from discrete time signal by
passing through filterbanks consisting of appropriate high
and low pass filters. The wavelet coefficients follow from
a downsampling process while the original signal may
be reconstructed from the sampled coefficients through an
upsampling process.

III. ROTOR/ACTIVE MAGNETIC BEARING RIG

To validate proposed methods of fault detection and
closed loop control a flexible rotor/active magnetic bearing
rig was used. The system (figure 1) consists of a 2m long
shaft upon which four moveable disks are positioned. The
rotor is supported by two active radial magnetic bearings.
Each magnetic bearing has 8 poles forming four coil pairs.
These are configured as two orthogonal opposing pairs and
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Fig. 2. Block diagram showing fault identification procedure.

are arranged at ±450 to the vertical in order to maximise
static load capacity. Auxiliary rolling element bearings are
positioned inside the active magnetic bearings in order to
prevent rotor contact with the lamination stacks. The radial
clearance between rotor and auxiliary bearings is nominally
750µm. Two further bronze bush bearings are positioned
at the ends of the rotor with a radial clearance of 900µm.
Rotor displacement is measured using eight eddy current
transducers arranged into four orthogonal pairs. Transducer
pairs are positioned at the rotor ends and next to the active
magnetic bearings on the inner side. Initial rotor levitation
is achieved using proportional-integral-differential (PID)
feedback local to the magnetic bearings. A separate motor
is used to drive the system, through a flexible coupling.
The motor can run at speeds up to 100Hz (6000rpm).

IV. FAULT DETECTION

During variation of the disturbance inputs acting on
the rotor, localised transients may occur. Wavelet analysis
has been used in a variety of applications to identify
and measure transient events. A digital signal processing
method was presented by Cade et al. [25] identifying
localised transient rotor responses due to sudden variation
in rotor synchronous forcing as caused by rotor mass-loss,
and rotor/auxiliary bearing contact. This method focused
on using the Haar wavelet and considered the transient
and steady state responses in fixed and rotating reference
frames. Figure 2 shows a schematic block diagram of the
fault identification process. The measured rotor vibration
signal q(t) is converted into fixed and synchronous rotating
reference frame vectors, qf (t) and qr(t), respectively.
Following wavelet decomposition the wavelet coefficients
are evaluated using logic to produce an output signal s(t).

Experimental validation was performed using mass-loss
tests. Two experiments (cases 1 and 2) were performed
using two different sized mass-losses from an the same
indeterminate initial state of rotor balance. In case 1 the
system was excited into a synchronous orbit. In case 2 the
system was excited into a synchronous orbit with repetitive
rotor/auxiliary bearing contact. Figures 3 (a) and (b) show
the rotor vibratory responses at the non-driven disk end
due to the two disturbances. The contacts for case 2 were
audible and coincide with vibration amplitudes exceeding
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Fig. 3. (a) and (b) show measured rotor displacement in the x-axis at
right hand rotor disk due to case 1 and case 2. (c) and (d) show the fixed
frame wavelet coefficient variations. (e) and (f) show the rotation frame
wavelet coefficients variations. (g) and (h) show the identified fault signal.

the nominal clearance. Figures 3 (c) and (d) shows the
responses of the synchronous measured wavelet coefficients
observed in a fixed reference frame for both cases. Figures
3 (e) and (f) show the variation in synchronously rotating
frame wavelet coefficients corresponding to 4× the syn-
chronous frequency of the rotor in order to identify the
sudden rotor/bearing contacts. In order to identify faults a
thresholding method may be applied. Figures 3 (g) and (h)
show a possible fault identification signal evaluated from
wavelet coefficient thresholding and a comparison of the
wavelet coefficients present in each reference frame. Neg-
ative logic indicates sudden rotor unbalance and positive
logic indicates rotor/auxiliary bearing contact.

V. SYSTEM DYNAMICS IN THE WAVELET
COEFFICIENT DOMAIN

When designing a system or controller it is important
to have an accurate system model. Therefore, when con-
sidering the system in the wavelet coefficient domain it is
important to have a dynamic model for the system wavelet
coefficients. In standard notation the system transfer func-
tion can be represented in the Laplace transform domain

as

Q(s) = G(s)F(s) (2)

where Q(s), F(s) and G(s) represent the system response,
disturbance and plant respectively. When considering the
wavelet coefficient domain a similar expression can be
derived in the form

Q(a, s) = G(a, s)F(a, s) (3)

where equation (3) is specific to a wavelet dilation, a. How-
ever, in order to implement a wavelet based algorithm the
system dynamics need to be expressed in the Z-transform
domain. The discrete time dynamics of the system can be
expressed as

Qp,q(z) = G0
p,q(z)F

0(z)−
∞∑

a=0

2a−1∑
b=0

Gp,q,a,b(z)Fa,b(z)

(4)

where a, b, p and q are the wavelet coefficient dilations
and translations corresponding to the system disturbance
and response. G0

p,q(z) and Gp,q,a,b(z) represent the system
transfer functions corresponding to the average of the
disturbance and its corresponding wavelet coefficients and
are given by

G0
p,q(z) =

2N∑
l=1

(z + 1)Vl

(
V−1B

)
l
G1(z, λl, p, q)

Gp,q,a,b(z)

=
2N∑
l=1

(z + 1)Vl

(
V−1B

)
l
G2(z, λl, T, a, b, p, q)

(5)

where λl is the lth system eigenvalue, V is the eigen-
vector matrix, and Vl is the lth row of V,

(
V−1B

)
l

is
the lth column of

(
V−1B

)
l
, B is a force distribution

matrix and T represents a time period over which the
wavelet decomposition is expanded. G1(z, λl, p, q) and
G2(z, λl, T, a, b, p, q) represent the characteristics of the
wavelet used. A theoretical framework has been devel-
oped by Cade [26] to identify analytical expressions for
the system dynamics in the wavelet coefficient domain.
However, for practical applications a direct measurement
approach may be undertaken. From consideration of the
measured response of the system to step changes in the
wavelet coefficient disturbance applied through individual
magnetic bearing control axis, the corresponding system
model can be identified in the wavelet coefficient domain.
Figure 4 shows the measured system response at sensor
1, x(1), to a step change in the applied disturbance Haar
wavelet coefficients applied through the non-driven end
active magnetic bearing in the x-direction at 11Hz and
18Hz.
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Fig. 4. (a) and (b) show measured system wavelet coefficient response
to a step change in the disturbance wavelet coefficient corresponding to
11Hz and 18Hz respectively.

VI. CLOSED LOOP WAVELET COEFFICIENT
TRANSIENT CONTROL

Closed loop control of a rotor/active magnetic bearing
system may be achieved using methods derived by Cade
et al. [27] with control signals evaluated in the wavelet
coefficient domain. The controller may be designed to
suppress the transient response of the wavelet coefficient
in a finite settling time. Furthermore, a prescribed transient
response may be specified at the design stage to dictate the
specific rate at which the wavelet coefficients are attenu-
ated. Control force wavelet coefficients can be specified
by

Up,q(z) = −Lp,q(z)Qp,q(z) (6)

where Lp,q(z) represents a wavelet coefficient controller.
The closed loop transfer function of the system can be spec-
ified by expanding equation (4) to incorporate disturbance
and control force wavelet coefficients as

(I−Gp,q,p,q(z)BuLp,q(z))Qp,q(z) =

G0
p,qf

0
0 −

∞∑
a=0

2a−1∑
b=0

Gp,q,a,b(z)Fa,b(z)
(7)

For a controller designed to minimise the transient response
of the system at a given wavelet coefficient level and
provide optimal steady state performance,

Lp,q(z) = (Gp,q,p,q(z))∗
(

1
αp,q(z)(z − 1)

− 1
)

(8)

where (.)∗ indicated the pseudo-matrix inverse and αp,q(z)
specifies a prescribed transient response that can be ex-
pressed at each time step k as

αp,q(z) =
∞∑

k=1

ck
zk

(9)

Experimental validation was performed using a flexi-
ble rotor/active magnetic bearing system (figure 1). Step
synchronous force tests were performed by applying a
sudden change in the synchronous disturbance force, 150N,
acting through the non-driven end active magnetic bearing.
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Fig. 5. Measured step synchronous force response in the x-axis at a
rotational speed of 11Hz, showing uncontrolled responses and controlled
response with wavelet coefficients.

Results are presented for step synchronous disturbance
tests at 11Hz and 18Hz. These correspond to the first
two nominally rigid body rotor modes of vibration. The
transient wavelet controller was configured using the Haar
mother wavelet to provide exponential decay to the system.
However, this method allows for any prescribed transient
response to be specified. Figures 5 and 7 show the rotor
response at the non-driven end and non-driven end active
magnetic bearing in the x-axis for the standard rotor-
PID controlled case and rotor-PID system with additional
transient wavelet control. Figures 6 and 8 show the total
(PID plus wavelet) magnetic bearing control forces.

The controller used to achieve the results of figures 5-
8 was based on an exponentional decay, with appropriate
coefficients specified in equation(9). In fact, the series in
equation (9) was truncated to five terms so that after five
synchronous cycles the target transient response is zero. In
reality, due to system model errors/uncertainties the actual
rotor vibration has a residual steady state component. How-
ever, the transient response is effective. The question arises
as to whether the target response specified by equation
(9) could be reduced to achieve faster transient vibration
attenuation. The problem that may occur is closed loop
instability due to the modelling errors and also from the
delays involved in evaluating the wavelet coefficients.

VII. CONCLUSIONS

An investigation has been performed considering the use
of wavelet analysis within rotor/active magnetic bearing
systems.

Firstly, a method of fault detection using wavelet analysis
was explained in order to distinguish between fault condi-
tions arising from mass-loss tests and due to rotor/auxiliary
bearing contact. This process is based around the ability
of wavelet analysis to identify localised transients and to
detect the onset of a fault condition by comparing them
in different reference frames. Experimental validation was
performed to assess the ability of this process to detect
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Fig. 6. (a) and (b) show the total control forces at non-driven end and
driven end active magnetic bearings at a rotational speed of 11Hz. (c) and
(d) show the wavelet coefficients of control force.
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Fig. 7. Measured step synchronous force response in the x-axis at a
rotational speed of 18Hz, showing uncontrolled responses and controlled
response with wavelet coefficients.
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Fig. 8. (a) and (b) show the total control forces at non-driven end and
driven end active magnetic bearings at a rotational speed of 18Hz. (c) and
(d) show the wavelet coefficients of control force.

and identify these fault conditions and this was shown to
be effective.

A closed loop control algorithm acting in the wavelet co-
efficient domain was evaluated and experimentally verified.
The controller was designed to minimise wavelet coeffi-
cients with pseudo-frequencies matching the synchronous
frequency of the rotor. The influences of modelling error
and system delays in the control action mean that perfect
control may not be possible with residual steady stae
error and limitations on the achieveable transient vibration
attenuation rates. Nonetheless, wavelet analysis is seen as
a novel method for use within closed loop rotor/active
magnetic bearing systems, with the potential for future
improvements and applications.
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