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Abstract— A lumped-parameter thermal model capable of
both static and transient analysis for a radial active magnetic
bearing is presented. The determination of the electromag-
netic state of the bearing using reluctance network method
is proposed and the analytical calculation of four different
power loss sources is discussed in details. The thermal
model is tested by determing the power losses, steady state
temperature distribution and transient temperature response
of a prototype 8-pole magnetic bearing.

Index Terms— Magnetic bearings, thermal modeling, power
losses

I. INTRODUCTION

In active magnetic bearings, the design of heat transfer is
of equal importance as the electromagnetic design of the
bearing, since the thermal rise of the bearing eventually
decides the maximum current of the coils and thus the
maximum force obtained from the bearing system. The
heating of the bearing is due to the electromagnetic losses
of the rotor and the stator cores and the ohmic losses of the
stator windings. All of these loss components are strongly
dependent on the operation point of the bearing, i.e. the
angular velocity of the rotor and the current needed for the
required force production. Furthermore, the eddy current
losses of the rotor and the ohmic losses of the stator coils
are temperature dependent via the temperature coefficient
of the electrical resistivity. Besides the losses due to the
bearing itself the fluid flowing in the air gap of the bearing
is usually warmed by the losses of the electrical machine
and the gas friction losses. This causes that the temperature
of the cooling fluid could be considerably higher than the
inlet temperature of the motor thus increasing the temper-
ature at different parts of the bearing. The gas friction
losses can be of significant importance especially when
the bearing is operating at high speed. The rotating rotor
gives a tangential velocity component for the air gap gas.
In addition, the gas has also an axial velocity component if
the cooling gas is blown through the air gap of the magnetic
bearing. Both the tangential and axial velocities affect the
friction torque of the bearing thus generating friction losses
in the air gap. A comprehensive analysis on the friction
losses of high-speed machinery is reported in [1].

Many researchers have developed thermal analysis meth-
ods for electrical machines. The most common approach
is to utilize lumped parameters, i.e. thermal resistance
networks as presented e.g. in [2] and [3]. Both of the

studies were concentrated on the thermal analysis of an
induction motor and both static and transient analysis was
performed. [1] presented a static thermal model for high-
speed induction motor where the heating of the cooling
fluid was taken into account by utilizing a special cooling
matrix. In this method, the cooling fluid flow inside the
machine was modeled in terms of an additional matrix
of thermal resistances. Because of the structural similar-
ity between electric machines and radial active magnetic
bearings, the same thermal analysis methods can be used
in both applications. Examples of the lumped parameter
based static thermal analysis of active magnetic bearing are
given in [4] and [5]. However, in neither case the transient
thermal analysis was considered.

In this paper a transient thermal analysis procedure for
radial active magnetic bearing is presented. The cross-
sectional geometry of the studied bearing is shown in Fig.
1. A two-dimensional reluctance network method (RNM)
[6] is used to calculate the magnetic field distribution
in the bearing geometry as well as the performance of
the bearing, i.e. the coil current versus radial force char-
acteristics, position and current stiffnesses and dynamic
inductances of the coils. The rotational speed dependent
eddy current and hysteresis losses of the rotor and the
operating current dependent ohmic losses of the stator coils

Fig. 1. Cross-sectional diagram of the modeled radial active magnetic
bearing mounted on the end plate of a high speed electrical machine.



are evaluated using analytical equations. The modeling of
the friction losses in the bearing air gap is also discussed.
A thermal network model (TNM) exploiting the modeled
loss components as thermal sources is used to calculate
the temperature rise in different parts of the bearing. The
temperature dependency of the TNM parameters is taken
into account.

The model enables the determination of the bearing hot
spots and the thermal current limitation in the coils at the
selected ambient temperature. By combining the proposed
TNM with the thermal model of the high speed electri-
cal machine the operation temperatures and the cooling
requirements in terms of the cooling gas mass flow rate
meeting the specified temperature rises can be predicted.

II. MODELING

A. Reluctance network model

In the reluctance network model, Maxwell’s field equa-
tions are reduced to a set of magnetic circuit equations.
The magnetic circuit is composed of sources describing
the magneto-motive forces created by the windings and
reluctances representing different parts of the geometry.
In order to keep the model complexity reasonable some
simplifications and assumptions are made. The bearing
geometry is modeled in Cartesian 2-D plane, i.e. the coil
end effects are not taken into account. An uniform flux
distribution in the flux path cross sections is assumed and
that the leakage flux flows only in the modeled leakage
paths. Due to the laminated rotor and stator cores the
eddy currents and hysteresis are assumed to have negligible
effects on the distribution of the air gap flux. With these
assumptions the field equations and the material properties
connecting the magnetic field intensity and the magnetic
flux density can be combined into a relative small group
of nonlinear algebraic equations. As a solution of these
equations the magnetic field distribution is obtained.

Fig. 2a shows a geometry of the studied eight-pole
radial active magnetic bearing. In Fig. 2b the equivalent
reluctance network model with definitions of loop-fluxes Φi

and branch fluxes φi is presented. The geometry is divided
to reluctances representing the stator yoke <sy , upper <zup

and lower <zlow part of the stator tooth, stator slot <slot,
air gap <δ and rotor yoke <ry . Magneto-motive forces
created by the coils are modeled with sources denoted by
N/2ik.

Initial values of the rectangular reluctances are calculated
as

<i = li/(µiAi) (1)

where li is the length of the reluctance in the direction
of the flux density, Ai is the cross sectional area of the
reluctance and µi is the permeability of the unsaturated
branch material. For arched reluctance the equation
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Fig. 2. Geometry a) and reluctance network model b) of radial AMB.
N is the number of coil turns per pole pair, Φi and φi are the ith loop
and branch fluxes, respectively.

where θi is the arc angle, zi is the axial length of the
branch and rout and rin are the outer and inner radius of the
branch can also be considered. Between the iteration steps
the reluctances consisting of nonlinear iron are updated
using the formula

<i(φi) = Hi(Bi)li/φi (3)

where Bi is the branch flux density and the field inten-
sity Hi(Bi) is evaluated from the magnetization curve of
the stator and rotor core material using the cubic spline
interpolation.

The nonlinear equations of the RNM can be expressed
in the matrix form as

T<(φ)TTΦ = Ni (4)

where < is the diagonal reluctance matrix, φ is the branch
flux vector, Φ is the loop-flux vector, T is the loop-set
matrix connecting the branches to correct loops, i is the coil
current vector and N is the matrix, which couples the coil
currents to the magneto-motive force of the loops. Loop-
fluxes are solved iteratively using the following Newton-
Raphson algorithm

Φk+1 = Φk −
(
T [J<(φ)φ]kTT

)−1

rk (5)

J<(φ)φ = ∂(<(φ)φ)/∂φ (6)

= diag
[

∂<i(φi)φi

∂φi
· · · ∂<M (φM )φM

∂φM

]
r = T<(φ)TTΦ−Ni (7)

where J is the Jacobian matrix, rk is the residual of the
kth iteration step and M is the total number of the branch
fluxes.

B. Losses

1) Eddy current losses: Eddy current power losses in
the laminated rotor are evaluated by using the analytical
method presented in [7]. However, instead of using the
proposed analytical field solutions for both the lamination
and the air gap, we exploit the numerical solution obtained
from the RNM. The total eddy current loss of the rotor



is obtained as a sum of the power loss contributions from
each air gap flux harmonic

Pe = ULau3/2

√
σ

µ

∞∑
n=1

[
η coth (knWr)

√
knC2

n

γ2

]
(8)

where U is the circumference at the tip of the pole of
the stator, L is the axial length of the journal, a is the
lamination thickness, u is the peripheral speed of the rotor,
Wr is the radial width of the rotor lamination and σ
and µ are the conductivity and permeability of the rotor
lamination material. Parameter γ and the rotating effect
number η are defined by

γ = cosh (knδ) +
1
µr

coth (knWr) sinh (knδ) (9)
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where δ is the radial air gap length, µr is the relative
permeability of the rotor material. Rem is the magnetic
Reynolds number defined as

Rem =
a2ωµσ

4
(11)

where ω is the angular velocity of the rotor and n is the
order of the harmonic. Coefficients Cn are obtained from
the Fourier series approximation of the flux density B(x)
at the bearing pole surface

B(x) =
∞∑

n=−∞
Cneiknx (12)

where kn = 2πn/U and x is the coordinate along the pole
tip circumference.

2) Hysteresis and ohmic losses: Hysteresis losses are
assumed to occur only in the rotor and they are modelled
using the well-known equation of Steinmetz

Ph = khfB̂1.6V (13)

where kh is the hysteresis loss coefficient of the rotor
material, f is the frequency of the cyclic magnetization,
B̂ is the peak flux density in the iron and V is the
volume of the iron. For the paired pole configuration
the magnetization frequency is twice the rotor rotation
frequency.

Total ohmic loss taking place in the stator coils is
calculated as

Pcu =
8∑

i=1

Rcoil,i(Ti)I2
coil,i (14)

where Icoil,i is the current and Rcoil,i(Ti) is the resistance
of the ith coil at the temperature Ti. The temperature
dependency of the coil resistance is taken into account by

Rcoil,i(Ti) = [1 + αcu (Ti − T∞)]Rcoil,i(T∞) (15)

where αcu is the temperature coefficient of the resistivity
of copper and T∞ is the ambient temperature.

3) Friction losses: Losses due to the gas friction affect
indirectly to the temperature rise of the bearing because the
friction losses heat the cooling fluid. The friction losses in
the air gap of the bearing can be estimated by the equations
derived for rotating cylinders in enclosures. The friction
power Pfr associated with the resisting drag torque of a
rotating cylinder can be written as [1]

Pfr = k1CTρπω3r4l (16)

where CT is the torque coefficient, ρ is the mass density of
the cooling fluid, ω is the angular velocity, r is the radius
and l is the length of the cylinder. k1 is the roughness
coefficient the value of which is 1.0 for smooth surfaces
and typically 2 . . . 4 for slotted surfaces.

When a rotor is rotating in enclosure, i.e. inside the
stator, the nature of the tangential cooling gas flow exerted
by the rotating cylinder can be determined using the
Couette Reynolds number, defined as

Reδ =
ρuδ

µcf
(17)

where µcf is the dynamic viscosity of the cooling fluid.
According to the measurements reported in [8] the torque
coefficients equations within the different flow regimes are

CT = 0.515

(
δ
r

)0.3

Re0.5
δ

(
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)
(18)

CT = 0.0325

(
δ
r

)0.3

Re.
δ

(
Reδ > 104

)
(19)

The friction losses increase if there is an axial gas flow
through the air gap of the bearing. The rotor forces the
cooling gas into a tangential movement and some power is
needed for this acceleration. If the radial air gap length is
small compared to the rotor radius, the power loss due to
axial flow can be approximated with

Pfr,a = k2qmu2 (20)

where k2 is the velocity factor and qm is the mass flow rate
of the cooling gas. The velocity factor depends on whether
the flow is laminar or turbulent and the roughness of the
air gap surfaces. According to [9], the theoretical velocity
factor gets a value of 0.48 in turbulent flow. However, the
real value for the velocity factor can be expected to be
much lower. According to the results reported in [10], the
velocity factor, in case of a smooth rotor surface, gets a
value of 0.18 for a smooth stator surface and 0.15 for a
rough, i.e. slotted stator surface. Thereby, the stator slotting
decreases the losses associated with the axial cooling gas
flow through the air gap. It must be noticed that the mass
flow rate dependent friction loss turns into heat after the
air gap, i.e. it does not affect to the radial heat transfer of
the rotor and the stator cores of the bearing.



Fig. 3. Thermal network model of the radial active magnetic bearing.

C. Thermal network model

In the thermal network model the geometry of the stud-
ied radial active magnetic bearing is divided into 6 parts,
i.e. rotor, stator core, upper and lower part of the stator
teeth, air-gap and stator winding. The developed thermal
resistance network presented in Fig. 3 consists of 81 nodes
and 120 thermal resistances. All heat transfer mechanisms,
i.e. thermal conduction, convection and radiation as well
as the effect of the temperature on the thermal material
properties of the bearing and the cooling fluid are taken
into account in the model. Due to laminated structure of
the stator and rotor the axial heat conduction is assumed
to be negligible except in the coils and shaft.

The general equation for the thermal resistance describ-
ing the heat conduction is

Rcond =
L

λA
(21)

where L is the length of the heat transfer path, λ is the
thermal conductivity and A is the cross-sectional area of
the surface normal to the direction of the heat transfer.
The convection heat transfer between solid surfaces and
cooling gas is modeled using a single thermal resistance
Rconv defined as

Rconv =
1

αA
(22)

where α is the convection coefficient. The thermal contact
resistances due to the contact transitions, e.g. between the
stator and the frame, are modeled in a similar manner by
substituting the convection coefficient with the contact heat
transfer coefficient. The thermal radiation between solid
surfaces i and j is modeled as a single thermal resistance
Rij

rad defined as

Rij
rad =

Ti − Tj

εσSB

(
T 4

i − T 4
j

)
FijAi

(23)

where Ti and Tj are the absolute temperatures of the
surfaces, respectively, ε is the emissivity, σSB is the Stefan-
Boltzmann’s constant, Fij is the view factor between
surfaces and Ai is the area of the radiating surface.

The most important convection coefficients to be evalu-
ated are the convection coefficients between the stator and

the air gap as well as between the rotating rotor and the
air gap. The air gap flow can be considered as a channel
flow and its Nusselt number is given by

Nu =
αδ

λ
(24)

where λ is now the thermal conductivity of the cooling
fluid. The correlation equations for the Nusselt number is
found as a function of the Taylor number defined as

Ta =
ρ2ω2rδδ

3

µ2
cf

(25)

where rδ is the mean radius of the air gap. Regarding the
value of the Taylor number the Nusselt number is [11]

Nu = 2 (Ta < 1740) (26)
Nu = 0.409Ta0.241

−137Ta−0.75 (Ta ≥ 1740) (27)

The other convection coefficients were evaluated using the
correlation equations found e.g. in [12].

For steady-state analysis, the temperature rise of the
each node of the thermal network relative to the reference
temperature is calculated using the matrix equation

∆T = G−1P (28)

where P is the power loss vector containing the losses
at each node and ∆T is the temperature rise vector. In
the developed thermal model the thermal resistances of
different parts of the bearing are used to generate an 81×81
thermal conductance matrix G defined as

G =


∑81

i=1

1
R1,i

− 1
R1,2

· · · − 1
R1,81

− 1
R2,1

∑81

i=1

1
R2,i

· · · − 1
R2,81

...
...

. . .
...

− 1
R81,1

− 1
R81,2

· · · ∑81

i=1

1
R81,i

 (29)

where the nth diagonal element is the sum of the network
conductances connected to node n, and G(i, j) is the
thermal conductance connecting the nodes i and j.

In transient problems, a representation for the stored
thermal energy in the system is introduced as thermal
capacitances. Each node is assigned with a thermal ca-
pacitance from the node to the ambient. The thermal
capacitance of such an element is calculated as

Cth,i =
n∑

j=1

mjcp,j (30)

where m is the mass, cp is the heat capacity and index
j signifies different materials in the same element. By
defining a thermal capacitance matrix

C =


Cth,1 0 · · · 0

0 Cth,2 · · · 0
...

...
. . .

...
0 0 · · · Cth,81

 (31)



the derivatives of the temperature rises relative to a refer-
ence temperature are found by solving

d

dt
(∆T) = C−1 (P−G∆T) (32)

Final temperature rises are numerically integrated using
Heun’s method with a fixed time step of 0.25 s.

III. CALCULATION PROCEDURE

The calculation procedure of the model is divided into
modular steps as indicated in the flowchart shown in Fig.
4. In the first step the bearing geometry and initial material
properties are read into memory. The second step includes
the calculation of the magneto-motive forces and initial
branch reluctances for the RNM and thermal resistances
and capacitances for the TNM. Operation point variables
introduced at this point consist of the four coil currents
Icoil,i, i = 1...4, ambient temperature T∞, which repre-
sents also the temperature of the cooling fluid, and the
rotational speed of the rotor ω. After this the magnetic field
distribution in the bearing is solved using the RNM and the
air gap flux density B(x) is delivered to loss calculation
block. In RNM a centered rotor is assumed although the
model is also able to handle the eccentric situations.

Next the iteration or time step loop comprising the
calculation of power loss components and temperature in-
crements or their derivatives is performed. In static problem
the convergence criteria is tested after each iteration step. If
the solution has not converged the temperature dependent
material properties and model parameters are updated and
next iteration step is taken. If the convergence is reached or
if we are solving the transient problem, the problem type
and the end time criterion are checked. In case of the static
model or if the final time of the transient simulation has
been encountered, the final results are plotted and saved
for the further analysis. Otherwise, the node temperatures
and temperature dependent parameters are updated and the
calculation of the next time step is started.

IV. RESULTS

Developed thermal model was tested in the calculation of
power losses as well as the static and transient temperature
responses of an 8-pole radial active magnetic bearing
designed and manufactured in Lappeenranta University of
Technology. The dimensions and material parameters of
the test bearing are in Table I. In all calculations the
ambient and the average cooling air temperature of 20◦C
was assumed.

Fig. 5 presents the eddy current, hysteresis, friction,
ohmic and total losses as a function of the rotational speed.
The bearing coil currents were 3.75 A. At the nominal
rotational speed of the machine (12000 rpm) the eddy
current losses and the total losses are estimated to be 21 W
and 61 W, respectively. Ohmic losses show an interesting
behavior. They seem to first somewhat decrease when the
rotational speed is increased. This can be explained by
the fact that the coil resistances decrease due to improved
cooling by the convection when the speed increases. The
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Fig. 4. Simplified flowchart of the calculation procedure.

TABLE I
DIMENSIONS AND MAGNETIC MATERIAL PARAMETERS OF THE TEST

BEARING

Stator outer diameter 180 mm Relative permeability 7000
Core length 60 mm Electrical resistivity 0.55 µΩm

Shaft diameter 60 mm Thermal conductivity 52 W
mK

Rotor outer diameter 89.8 mm Hysteresis loss coefficient 200 J
m3

Air gap 0.6 mm Static air gap flux density 0.7 T
Pole width 18 mm Coil resistance 0.58 Ω

Lamination thickness 0.5 mm Number of turns per pole 90

same can be observed also in Fig. 6 where the steady state
temperatures of the selected nodes at different rotational
speeds are shown. After a certain point, however, the power
losses in the rotor compensate this effect and the coil
temperatures and the ohmic losses start increase again.
Rotor temperature increases continuously as a function of
the rotational speed due to increasing eddy current and
friction losses. Generally, the nodal temperatures at the
investigated speed range are within an acceptable level.

Typically, the bias current is chosen to be half of
the maximum bearing current yielding an equally large
current amplitude available for control. This selection leads
to extensive power losses in totally and the maximum
operational temperature of the windings may be exceeded.
The proposed calcucation model can be also utilized in
selecting an appropriate bias current as a trade off between
sufficient control performance and bearing temperatures.
An example is given in Fig. 7 where the effect of the bias
current level on the node temperatures at 12000 rpm is
presented. It is seen that by reducing the bias current from
5 A to 3.75 A the coil temperature is approximately halved.

Finally Fig. 8 shows the temperature transient due to
start up at 6000 rpm and a rotational speed step from 6000
rpm to 12000 rpm. From the responses it is observed that
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the temperatures converge accurately to steady state values
predicted in Fig. 6. At rotational speed of 6000 rpm the
average settling times of the coil and rotor temperatures
are about 45 and 90 min, respectively.

V. CONCLUSIONS

Static and transient thermal model of radial active mag-
netic bearing was presented. Magnetic conditions of the
bearing were solved using the reluctance network model
and the different power loss components were evaluated
from analytical expressions. Temperature dependency of
the material properties was taken into account. The de-
veloped thermal model can be used to determine the
power losses and temperature distribution of the bearing in
steady state conditions as well as in the transition between
different operation points. Future work will include the
final tuning of the model parameters and the experimental
verification of the calculated results.
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