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Abstract— Typical models for AMB actuators consist of a
static linearized mapping from displacement and current to
force (f ≈ −Kxx + Kii) and are augmented with actuator
dynamics (bandwidth and gain) which act to correlate a
command signal Vc to resulting current: I(s) = Ga(s)Vc(s).
In the present work, we show that this model misses a
number of potentially important features, most notably the
effect of amplifier bandwidth limitations on the term mapping
displacement to force (Kx) and the related influence of journal
motion induced back-EMF. In addition, we show how actuator
eddy currents interact with the amplifier dynamics and how
to model the resulting composite system.

I. INTRODUCTION

Since the beginning of published literature on active
magnetic bearings, the standard model for the actuator has
relied on a static linearized mapping from displacement and
current to force (f ≈ −Kxx+Kii) [1]. Later developments
included amplifier dynamics in order to achieve higher
fidelity. These dynamics were applied in simple way to
the existing model: it was assumed that the mapping from
amplifier command signal to actual current is characterized
by the SISO transfer function I(s) = Ga(s)Vc(s) so that
F (s) = Ga(s)KiVc(s) − KxX(s) [2], [3].

In the present work, we show that this model misses a
number of potentially important features, most notably the
effect of amplifier bandwidth limitations on the term map-
ping displacement to force (Kx) and the related influence
of journal motion induced back-EMF. In addition, we show
how actuator eddy currents interact with the amplifier dy-
namics and how to model the resulting composite system.

The primary product of the paper is a reformulation so
that

F ≈ KiGa(s)Vc − KxGx(s)X

in which Ki and Kx are defined in the usual fashion and Ga

is the transfer function of the power amplifier as measured
with constant gap. Gx(s) is similar to Ga except that its
DC gain is 1.0. This formulation is developed for a single
axis AMB and then generalized to an n−axis device.

In addition, when eddy currents are considered, this form
can be extended as

F ≈ KiGa,ec(s)Vc − KxGx,ec(s)X

to include the effect of finite lamination thickness. The
transfer functions Ga,ec and Gx,ec are very similar to
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Fig. 1. Simple AMB with an opposed pair of stator quadrants.

the non–eddy current models Ga and Gx but embed the
transfer function

Ge =
R0

R0 + c
√

s

The parameters R0 and c are readily computed from
actuator geometry and material properties.

Several examples are presented to illustrate the differ-
ences in predicted behavior between the static linearized
model and this newer model, both with and without eddy
current effects. In particular, we demonstrate that very stiff
suspensions will tend to mask these differences but that
soft suspensions – especially those employed when the
AMB is used as a test actuator – will tend to emphasized
these differences, resulting in very substantial error with
the simpler model.

II. DYNAMICS WITHOUT EDDY CURRENTS

Consider a simple single axis AMB actuator with two
opposed horseshoe magnets as depicted in Figure 1. Each
magnet has N turns (two coils wired in series, each with
N/2 turns), pole cross section area Ag , and has its pole
inclined at an angle cos−1 γ to the vertical direction. The
resistance of each series connected pair of coils is R. For
such a pair of magnets,

F =
γAg

μ0

(
B2

1 − B2
2

)
(1)



and (neglecting eddy current effects)

Bi =
μ0N

2(g0 + (−1i)γx)
Ii (2)

Further, the coil voltages are related to B and I through

Vi = NAg
dBi

dt
+ IiR (3)

Now, assume that each of the drive amplifiers has the
control law

Vi = GV (s)Vref,i − GI(s)R0Ii (4)

in which R0 ≈ R and it may reasonably be assumed that
GV = αGIR0 (the constant α sets the DC transconduc-
tance gain) although either may contain some additional
filtering aimed at specific closed loop performance.

Define

Bb ≡ (B1 + B2)/2 (5a)

Bp ≡ (B1 − B2)/2 (5b)

so that B1 = Bb +Bp and B2 = Bb −Bp and assume that
Bb is held constant. Rearrange (2) as

Ii =
2(g0 + (−1i)γx)

μ0N
Bi ≈ 2g0

μ0N
Bi + (−1i)

2γBb

μ0N
x (6)

With this approximation, we can expand (3) as

Vi = NAg
dBi

dt
+

2g0R

μ0N
Bi + (−1i)

2γBbR

μ0N
x (7)

and (4) as

Vi = GV Vref,i − 2GIR0g0

μ0N

(
Bi + (−1i)γBb

x

g0

)
(8)

Equating (7) and (8) produces

GV Vref,i − 2GIR0g0

μ0N

(
Bi + (−1i)γBb

x

g0

)

=
(

NAgs +
2g0R

μ0N

)
Bi +

(−1i)2γBbR

μ0N
x (9)

Define
Vb ≡ (Vref,1 + Vref,2)/2

and add the two instances of (9) to obtain

Bb =
μ0NGV (0)

2g0R0 (GI(0) + R/R0)
Vb (10)

in which it is assumed that Bb and Vb are constant so that
sBb = 0.

Further, define

Vc ≡ Vref,1 − Vref,2

2
and subtract the i = 2 instance of (9) from the i = 1
instance to obtain

Bp =
μ0NGV

μ0N2Ags + 2g0R0(GI + R/R0)
Vc

+
2γBbR0 (GI + R/R0)

μ0N2Ags + 2g0R0(GI + R/R0)
x (11)

This may be written succinctly as

Bp =
μ0N

2g0
Ga(s)Vc +

γBb

2g0
Gx(s)x (12)

in which

L0 ≡ μ0N
2Ag

2g0
(13)

Ga(s) ≡ GV (s)
L0s + R0GI(s) + R

(14)

Gx(s) ≡ R0(GI(s) + R/R0)
L0s + R0GI(s) + R

(15)

Now, changing B coordinates as prescribed by (5), (1)
produces

F =
γAg

μ0

(
B2

1 − B2
2

)
=

4γAgBb

μ0
Bp (16)

Substitute (12) into (16) to obtain

F =
2γAgBbN

g0

(
Ga(s)Vc +

γBb

μ0N
Gx(s)x

)
(17)

Define the control current, i, as

i ≡ I1 − I2

2
so that

i =
GV (s)

L0s + R0(GI + R/R0)
Vc

− γBbNAgs

2g0 (L0s + R0(GI + R/R0))
x (18)

Noting the previous definition of Ga (14), call Ga the
closed loop amplifier transconductance and

i = Ga

(
Vc − γBbNAg

2g0GV
sx

)
(19)

The first term, Ga(s)Vc, is the term normally included in
magnetic bearing models. The second term depends on
the derivative of x: it represents the effect of back–EMF
induced by rotor motion and is typically not included in
magnetic bearing models.

For comparison to (17), solve (19) for Vc to obtain

Vc =
1

Ga(s)
i +

γBbNAgs

2g0
GV (s)x (20)

and combine (20) and (17) with definitions (14) and (15)
to produce (after some algebra),

F =
2γAgBbN

g0
i +

4Agγ
2B2

b

μ0g0
x (21)

Obviously, (21) is just the usual Taylor’s series expansion
of (1) in terms of the perturbation current, i ≡ (I1−I2)/2,
and the rotor displacement, x. Thus, assuming the form

F = Kii − Kxx



TABLE I

EXAMPLE THRUST BEARING PARAMETERS

inner radius, inner pole piece 51.69 mm
outer radius, inner pole piece 68.32 mm
inner radius, outer pole piece 90.83 mm
outer radius, outer pole piece 101.2 mm

nominal air gap, g0 1.0 mm
bias current, Ib 7 amps

coil turns, N 145
coil resistance, R 0.232 Ω

we obtain
Ki ≡ 2γAgBbN

g0

and

Kx ≡ −4Agγ
2B2

b

μ0g0

so that (17) becomes

F = KiGa(s)Vc − KxGx(s)x (22)

What is important about (22) is that, including journal
motion induced back–EMF terms as in (19) and amplifier
dynamics as in (4) modifies both the actuator gain term
(coefficient of i in (21)) and the open–loop stiffness term
(coefficient of x in (21)) imposing bandwidth limits to both
terms. Further, by making GV and GI different, it becomes
possible to maintain a high bandwidth product KiGa while
reducing the bandwidth of KxGx substantially: this is the
essential approach in flux feedback amplifiers. The penalty
is that Ga becomes sensitive at lower frequencies to R,
which can vary substantially with temperature.

A. Example: thrust bearing

To examine the effect of this dynamic limiting of Kx,
consider a thrust bearing with the dimensions and parame-
ters indicated in Table I. The amplifier transfer function
GI = 206s+578

0.232s while GV = 1.5 206s+578
s to give a DC

transconductance of 1.5 amps/volt. Because GI is so large
(a proportional gain of 887), the difference between Ga

and Gx is essentially just a matter of gain, as indicated in
Figure 2.

Clearly, the bandwidth of the Kx effect is the same as
that of the Ki effect. This connection arises because the
GI and GV differ only by a constant ratio. To get a notion
of when this dynamic is important, consider (19). If the bus
voltage driving the amplifier is 160 volts, then we begin to
be concerned about amplifier saturation when the back–emf
term approaches this value. That is, when∣∣∣∣γBbNAg

2g0GV
sx

∣∣∣∣ ≈ 160

or, more conveniently, when∣∣∣∣ x

g0

∣∣∣∣ ≈
∣∣∣∣ 320GV

γBbNAgs

∣∣∣∣
Since x < g0, we are interested in frequencies where the
term to the right is less than 1.0: at lower frequencies, the
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Fig. 2. Gain plots of Ga(s) and Gx(s) for the thrust example without
eddy currents.
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Fig. 3. Thrust bearing compensator Bode plot.

voltage problem cannot arise because the motions cannot
be large enough. For the present case, the frequency beyond
which this condition may be met is readily found to be 52
kHz. It is very unlikely that this thrust bearing will move
with an amplitude of ±1.0 mm at a frequency as high as
52 kHz!

To examine the implications for stability, assume that the
thrust bearing must control a mass of 34 kG and measures
this mass with a sensor with sensitivity of 15000 volts/m.
A PID controller is introduced with the transfer function

Gc(s) =
0.00096s2 + 0.8s + 1

8 × 10−8s3 + 0.00064s2 + s

whose Bode plot is provided in Figure 3. With this com-
pensator, the plant including bandwidth limiting on the
Kx term is stable with eigenvalues of −5500, −3800,
−2493, −1062, −44.1 ± 719j, and −2.05. If the same
system is modeled without bandwidth limiting on the Kx

term, the resulting closed loop system is not stable and has
eigenvalues of −5543, −3846, −1126, 7.35± 696, −2.05.

Not surprisingly, bandwidth limiting the Kx term im-
proves the stability of the system (hence the interest in
flux feedback). For systems of this sort with relatively



minor influence of this bandwidth limitation, it is probably
conservative to ignore the effect, although it is not costly
to include it.

III. DYNAMICS WITH EDDY CURRENTS

To consider the effect of eddy currents, we appeal to
the developments in [4]. In that work, it is shown that
the relationship between coil current, gap flux, and gap
variation is closely approximated by

φp(s) =
N

R0 + c
√

s
Ip(s)− ∂g

∂xp

2NIb

μ0AgR0

1
R0 + c

√
s
Xp(s)

(23)
in which the subscript p indicates small perturbations about
an equilibrium point. The coefficient c characterizes the
eddy current production in the material: large c implies high
bulk conductivity. The constant nominal circuit reluctance,
R0, is defined for our purposes as

R0 ≡ 2g0

μ0Ag

Thus, we may rearrange (23) as

Bi(s) =
μ0NIb

2g0

1
1 + c′

√
s

(
Ii(s)
Ib

− (−1)iγ
x(s)
g0

)
(24)

in which

c′ ≡ μ0Ag

2g0
c

Following the previous development but using
this modified relationship between flux, current, and
displacement, it is fairly direct to obtain the modified
model

F = KiGa(s; c′)Vc − KxGx(s, c′)x (25)

Ga(s; c′) ≡ GV

L0s + (1 + c′
√

s) (GIR0 + R)
(26)

Gx(s; c′) ≡ (R + GIR0)
L0s + (1 + c′

√
s) (GIR0 + R)

(27)

A. Example

To illustrate the alteration this produces, consider the
previous example thrust bearing. Here, the parameter c
has been estimated from experimental work as c ≈
0.015A/Tm2√sec. For comparison, the gain and phase
of the transfer functions Ga(s) and Ga(s; c′) are plotted
in Figure 4. The functions Gx(s) and Gx(s; c′) have the
same character.

It is particularly interesting to note that both the non–
eddy current model and that including the eddy currents
reach a phase of −45o at the same frequency (about 400
Hz).
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Fig. 4. Bode diagrams of Ga(s) (no eddy currents in the model) and
Ga(s, c′) (includes eddy currents in the model).

IV. EXTENSION TO GENERALIZED ACTUATORS

For a general actuator, the relationship between the
actuator gap flux density distribution B and force in any
given direction ŷ is [5]

Fy ≡ F · ŷ =
1

2μ0
B�AyB (28)

in which
Ay = diag[Ay,i]

and
Ay,i = −Ai · ŷ

that is, the diagonal elements of Ay are the dot product of
the outward normal to each pole’s area and the direction
ŷ in which the force is measured. The magnitude of Ai is
the gap area of the ith pole face.

The vector of gap fluxes B is related to the coil currents
I and rotor position x by

R(x)B = N I (29)

By Faraday’s and Ohm’s laws, the voltages across the coils
are

V = N d

dt
B + RI

Differentiating (29) produces

R(x)
d

dt
B +

n∑
i=1

dR
xi

B
dxi

dt
= N dI

dt
(30)

so that, assuming R−1 exists,

d

dt
B = R−1

(
N dI

dt
−

n∑
i=1

dR
xi

B
dxi

dt

)
(31)

and, finally,

V = NR−1

(
N dI

dt
−

n∑
i=1

dR
xi

B
dxi

dt

)
+ RI (32)



Typically, the coils are wound in series sets so that

V s = C�V

which dictates that the coil currents in the coils of these
series sets are given by

I = CIs

so that the coil voltages for the series sets are governed by

V s = C�NR−1

(
NC dIs

dt
−

n∑
i=1

dR
xi

B
dxi

dt

)
+ C�RCIs

(33)
Define

Ls ≡ C�NR−1NC∣∣
x=x0

Q = [Q
i
] : Q

i
≡ R−1 dR

dxi

B

∣∣∣∣
x=x0,B=B0

and
Rs ≡ C�RC

to obtain the simpler statement

V s = Ls
dIs

dt
− C�NQ

dx

dt
+ RsIs (34)

Now, assume a control law for the amplifier array:

V s = GV (s)V c − Rs,0GI(s)Is

so that

(Lss + Rs + Rs,0GI)Is = GV V c + C�NQsx

or,

Is = (Lss + Rs + Rs,0GI)−1
(
GV V c + C�NQsx

)
which may be written as

Is = Ga(s)
(
V c + G−1

V C�NQsx
)

(35)

in which

Ga(s) ≡ (Lss + Rs + Rs,0GI(s))−1GV (s)

Referring back to (28),

Fy ≈ 1
μ0

B�Ay
∂

∂Is

B
(
Is − Is,0

)
+

1
μ0

B�Ay
∂

∂x
B (x − x0) (36)

=
1
μ0

B�Ay

(R−1NC (Is − Is,0

)− Q (x − x0)
)

Define

Ki,y ≡ 1
μ0

B�AyR−1NC and Kx,y ≡ 1
μ0

B�AyQ

so that

Fy ≈ Ki,y

(
Is − Is,0

)− Kx,y (x − x0) (37)

As previously, substitute (35) into (37) to obtain

Fy ≈ Ki,yGa(s)V c,p +
(
Ki,yG−1

V C�NQs − Kx,y

)
xp

(38)
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Fig. 5. Schematic view of the actuator/amplifier/rotor interaction. Eddy
currents are not indicated

V. SYSTEM OBSERVATIONS

One useful feature of this expanded view of the dynamics
of the amplifier/actuator interaction is that it makes acces-
sible some important signals. An obvious way to model
the interaction is indicated in Figure 5. With this structure,
signals like coil voltage (V ) and perturbation flux (φ)
become accessible as part of the model signal set. These
signals can be very useful in evaluating system performance
– where voltage should be compared to amplifier supply
voltage and flux (plus bias flux) should be compared to
saturation levels for the actuator. This is especially valuable
when synthesizing controllers using methods like H∞ or μ
where cost functions should explicitly weight these signals.

VI. CONCLUSIONS

The dynamic interaction of the actuator, amplifier, and
rotor motion of an active magnetic bearing were reformu-
lated to properly account for the effects of finite amplifier
bandwidth on not only the actuator’s effective gain but
also its negative stiffness. Although the effect for practical
bearings is not strong, the formulation does offer higher
fidelity than existing models and has advantages in terms
of available signals when used in some control synthesis
frameworks. Further, the effect of eddy currents on these
properties was also explored using a simple fractional
derivative model which has been shown to exhibit high
fidelity. Extension to generalized actuators was developed
leading to a matrix formulation with a form similar to the
forgoing scalar result.
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