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Abstract— Control of an AMB supported machining spin-
dle was explored to determine the potential advantages of
µ−synthesis relative to more a conventional strategy based
on PID with notch filters. The spindle was manufactured
by Revolve Magnetic Bearings, Inc. and adapted to permit
control using a dSpace real time digital controller. This
very open platform enabled introduction of arbitrary control
algorithms, synthesized in MatLabTM.

The study compares the performance of a carefully de-
signed PID + notch compensator to that of a µ−synthesized
controller. The main finding is that µ−synthesis is better able
to reduce tool tip compliance than is PID+notch and that this
improvement was a factor of at least 2 over a wide range of
frequencies for the spindle examined.

I. INTRODUCTION

As the application of High Speed Machining (HSM) in
production environments grows, interest in the AMB ma-
chining spindles also increases (e.g., [1], [2], [3]). AMBs
permit a higher bearing surface speed and larger diam-
eter, or stiffer, spindle rotors. In addition, active control
capabilities enable greater spindle damping and the active
suppression of chatter [3].

However, to ensure high-quality machining operation,
the advanced control strategies require an accurate mathe-
matical model for the spindle, its components, as well as
for the cutting dynamics. This paper presents a modeling
approach for a high-speed spindle-bearing system based on
finite-element analysis coupled with experimental modal
identification and compares the performance of controllers
synthesized with the resulting model.

II. AMB SPINDLE AND MODEL

The platform for this study is an AMB supported ma-
chine tool spindle with the cross section shown in Figure 1.
The spindle was originally developed by Revolve Magnetic
Bearings, a subsidiary of SKF, Inc., and adapted to permit
control using a dSPACE digital controller. The spindle
rotor is supported by two radial bearings and one thrust
bearing. The maximum static radial load capacities are
approximately 1400 and 600 N for the front and rear
bearings, respectively, and the maximum axial capacity for
thrust bearing is 500 N. The spindle reaches a rotational

Fig. 1. Cross section of AMB machining spindle without tool holder.
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Fig. 2. Finite element model and first two bending modes of free-free
rotor with tool holder.

speed of 50,000 rpm at 10 kW. The AC motor acts on the
rotor between the thrust and rear radial bearing.

A free-free rotor model was constructed using a Timo-
shenko beam element formulation containing 64 elements.
Proportional damping and linear gyroscopic effects were
assumed. The large rotor model was then reduced using
modal reduction to four principal modes, including the two
rigid body modes. Figure 2 shows the rotor finite element
model and the first two bending modes.

A PID controller was designed to perform a system
identification of the levitated spindle to experimentally
determine the closed-loop transfer function between current
disturbance and rotor response. The modeled Bode plot
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Fig. 3. Modeled transfer function of PID controller. All four diagonal
(direct) elements are the same: all off-diagonal (cross coupling) elements
are zero.
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Fig. 4. Experimentally extracted closed-loop transfer function of the
system with the PID controller depicted in Figure 3.

for the controller implemented at 10 kHz is shown in
Figure 3. With the levitating controller operating, a sine
sweep current signal (0.25 Ampere over a 0 to 2500
Hz frequency bandwidth) was injected to each axis at a
time and closed-loop performance was extracted. Figure 4
illustrates the results of such measurement when the current
perturbation and measurement are taken for the same
axis at the front bearing. A linearized AMB model was
employed, and the parameters of the AMB were obtained
from the analytical model and subsequently refined using
the closed-loop testing data.

The controller was implemented using dSPACE based on
differential control, with 10 output channels required and
provided by the two D/A boards. The hardware consisted
of the DS1005 PPC Board featuring the PowerPC 750GX
running at 1Ghz. The controller sampling time was 10 kHz.

The resulting system model for controller synthesis and
assessment is indicated in Figure 5. The available exper-
imental and control inputs are indicated as u while the
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Fig. 5. Structure of the full model for controller synthesis and assessment.

available measurements are indicated as y. Other signals
(loads, noise) acting on the system are indicated as w while
the quantities that form performance assessment such as
peak rotor displacement, peak amplifier voltage, peak coil
current, and peak magnetic flux are indicated collectively
as z. The control goal, of course, is to use measurements
y to guide control efforts u to make responses z to loads
w acceptable.

Figure 6 presents a comparison of two of the 16 com-
ponents of the open loop plant transfer function extracted
experimentally and the plant model with the amplifier
bandwidth set to 2475 Hz and the sample delay set to 170
microseconds. The first bending mode at 1970 Hz is nearly
indistinguishable in a plot of G11 due to the presence of
a node for the first mode that is very close to the sensor
location.

To obtain this open loop transfer function in a MIMO
system like an AMB supported rotor, some care must be
taken in the signal processing. In this case, the system has
four inputs (amplifier perturbations for the x− and y− axes
of each bearing plane) and four outputs (sensor signals for
the x− and y− axes of each sensing plane). Thus, the open
loop transfer function has the form:

⎡
⎢⎢⎣

y1

y2

y3

y4

⎤
⎥⎥⎦ = G(s)

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦

in which G(s) is a 4 × 4 matrix of transfer functions.
To measure G(s), we conduct 4 experiments in which

each of the input signals ui is perturbed individually.
That is, for the first experiment, we inject a sinusoidal
perturbation to u1, for the second, to u2 and so on. For each
conducted experiment, a vector of all inputs to the plant
and a vector of all outputs from the plant were recorded.
That is, at each frequency, four sets of Fourier coefficients
were measured for the four amplifier inputs and four sensor
outputs:

U(ωi) =

⎡
⎢⎢⎣

U1,1(ωi) U1,2(ωi) U1,3(ωi) U1,4(ωi)
U2,1(ωi) U2,2(ωi) U2,3(ωi) U2,4(ωi)
U3,1(ωi) U3,2(ωi) U3,3(ωi) U3,4(ωi)
U4,1(ωi) U4,2(ωi) U4,3(ωi) U4,4(ωi)

⎤
⎥⎥⎦
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Fig. 6. Comparison of the modeled and experimentally extracted open
loop transfer function of the plant.

Y(ωi) =

⎡
⎢⎢⎣

Y1,1(ωi) Y1,2(ωi) Y1,3(ωi) Y1,4(ωi)
Y2,1(ωi) Y2,2(ωi) Y2,3(ωi) Y2,4(ωi)
Y3,1(ωi) Y3,2(ωi) Y3,3(ωi) Y3,4(ωi)
Y4,1(ωi) Y4,2(ωi) Y4,3(ωi) Y4,4(ωi)

⎤
⎥⎥⎦

In this manner, the signals are expected to be related by

Y(ωi) = G(jωi)U(ωi)

and the transfer function may be obtain by the simple
arithmetic

G(jωi) = U−1(ωi)Y(ωi)

If the perturbations for the four experiments have been
chosen well, then the required inverse U−1(ωi) will exist
all all of the test frequencies.

III. μ-SYNTHESIS BASED CONTROLLER

μ-synthesis is a model-based controller design technique
requiring an accurate mathematical model of the plant dy-
namics and bounds on the uncertainties associated with that
model [4]. This design methodology, focused on achieving
guaranteed stability and performance for uncertain systems,

can be very effective for machining application, due to
the presence of variation of cutting forces, feed rates, and
various cutting conditions.

The starting point for μ− synthesis is a model such as
that depicted in Figure 5, but this must be extended to
include weighting functions and uncertainty specifications.

A. Weighting functions

The purpose of the weighting functions is to normalize
the performance (z) and load (w) signals, with the goal
of making the maximum expected magnitude of w be 1.0
(no units) at all frequencies and the maximum allowed
magnitude of z be 1.0, also at all frequencies. As an
example, if w1 is an unbalance with mass eccentricity not
to exceed 0.1 g-mm, then

|w1| ≤ 1 × 10−7ω2

Thus, we can normalize w1 by

w1 =
1

10−7s2
w1

For an input signal, the weighting function converts a
normalized signal to the physical signal:

w = Www

so that, for this example, the ideal weighting function
would be

Ww,1(s) = 10−7s2

In practice, we require that the weighting functions are
strictly proper so that they can be represented with a state
space model. In this case, if the rotor will never be operated
above some speed ω ≤ ωmax, then the weighting function
may be made strictly proper by

Ww,1(s) =
10−7s2

(s/2ωmax)2 +
√

2s/2ωmax + 1

which gives a good approximation to 10−7s2 out to ωmax.
For an output signal, the weighting function converts

the physical performance measure back to a normalized
measure:

z = Wzz

The simplest example of this is a clearance limitation.
Assume that z1 measures the displacement of the rotor at
some point where there is potential contact between the
rotor and the casing. If the clearance is 0.5 mm and z1 is
measured in meters, then

z1 =
1

0.0005
z1

As long as |z1| < 1, then |z1| < 0.5 mm, as required. Thus,

Wz,1 =
1

0.0005
which is not frequency dependent.

In this manner, weighting functions are selected for each
component of w and z so that the performance of the
system is judged to be acceptable if

z = Wzz : |z| < 1 ∀ |w| < 1 : w = Www
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TABLE I

BEARING LOAD PARAMETERS

tool tip end drive end
DC load 300 N 130 N
first break 0.001 Hz 0.001 Hz
midfrequency load 80 N 50 N
second break 40 Hz 40 Hz

The resulting modified (weighted) plant model is shown in
Figure 7.

For the machine tool spindle problem, the loads were
assumed to act at the bearing locations while each of the
position sensors was assumed afflicted with noise. The
bearing loads are summarized in Table I while the sensor
noise was 0.6 micrometers broad-band. The performance
measures included amplifier voltage (limited to 300 volts),
coil current (limited to 7 amps above a 5 amp bias), and
journal displacement at the two bearing locations (limited
to 50 micrometers at frequencies above 0.002 Hz, and 0.5
micrometers below this).

B. Uncertainty

A significant goal of μ−synthesis is to design controllers
which are robust to variations in plant dynamics. A simple
example is the effect of gyroscopics: the dynamics of the
rotor at standstill are substantially different from those
observed when spinning at 16000 RPM. The rotor model
contains the rotor spin rate explicitly:

Mẍ + [D + ΩG]ẋ + Kx = f

in which the gyroscopic behavior of the rotor mass is
represented by the matrix G and Ω is the spin speed of the
rotor. If a controller is designed for the rotor with Ω = 0,
then there may be no guarantee that the system will be
stable for other values of Ω: obviously undesirable.

In the μ− framework, uncertainties are represented as
feedback gains connected to the plant where the nominal
value of the feedback gain is zero but it is understood that
the gain could lie anywhere inside a real range or complex
disk. By convention, the size of this range is chosen to
be 1.0. As an example, suppose that our rotor had a seal
acting at some location along the shaft. The seal might
have some nominal cross-coupled stiffness of 1000 N/m

controller delays, D/A,
AMB + amplifier dynamics,
rotor, sensor dynamics, A/D

u

Ww(s) w

uncertainty
weighting

Δ

Wz(s)z

y

Fig. 8. Model with weighting functions and uncertainty added.

but with uncertainty of ±300 N/m:[
fs,x

fs,y

]
=
[

0 1000 ± 300
−1000 ∓ 300 0

] [
x
y

]

This can be represented by[
fs,x

fs,y

]
=
[

0 1000
−1000 0

] [
x
y

]

+300
[

0 ±1
∓1 0

] [
x
y

]

The first part of the relationship defines the nominal
behavior and would be included in the core model. The
second part defines a feedback with nominal value of zero.
The scale 300 N/m would be applied to the input or output
matrices tying this feedback into the rotor model and the
remnant would be the uncertainty matrix, denoted Δ.

The product of adding weighting functions and uncer-
tainty representations to the base model is depicted in
Figure 8.

For the machine tool spindle, the primary uncertainties
were judged to be actuator properties, modal properties
for the two bending modes retained, and, of course, ro-
tor speed. The uncertainties in actuator gain and bearing
negative stiffness were modeled as 3% and 15% real
uncertainties of nominal value, respectively. The modal
frequencies of the first and second modes were modeled as
1% complex uncertainty of nominal value for each mode.
These latter uncertainties discourage the synthesis machin-
ery from introducing controller dynamics that precisely
cancel the dynamics associated with these modes as, for
instance, very sharp notch filters. Rotor speed was modeled
as 8000 RPM with an uncertainty of 100% in order to
obtain a stabilizing controller for the speed range from 0
to 16000 RPM.

C. Synthesis

Several μ-controllers were designed and just two ex-
amples are illustrated in Figure 9, where one of the
controllers was optimized to achieve the best machining
performance in terms of high surface finish quality. Both
controllers were implemented as discrete time, state-space
systems with a sampling rate of 10 kHz. For each case the
MatLabTM Robust Control Toolbox was used to synthesize
robust controller via -synthesis D-K iteration. The resulting
optimized controller was 88th order and was reduced to



-50

-40

-30

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

10
0

10
5

45

90

135

180

225

270

Ph
as

e 
(d

eg
)

 

 

G11

Frequency  (Hz)

Opt μ-Controller

μ-Controller

-50

-40

-30

-20

-10

0

10

M
ag

ni
tu

de
 (d

B
)

10
-5

10
0

10
5

0

180

360

540

720

P
ha

se
 (

de
g)

 

 

G44

Frequency  (Hz)

Opt μ-Controller

μ-Controller

Fig. 9. Comparison of two µ-controllers; one is optimized for machining.

44th order by model order reduction using Hankel singular
value based algorithms. Differences between the controllers
were generated by changing the performance and load
weighting functions.

To determine the spindle stiffness at the tool tip, with the
rotor supported on each the PID, the μ-controller, and the
optimized μ-controller, impact testing was carried out with
an instrumented hammer. The results presented in the upper
plot of Figure 10 show the advantage of μ-controllers,
especially in the vicinity of the first and second modes,
where the PID stiffness is significantly lower. Over the
wide range of frequencies the PID controller is much less
stiff while the optimized μ-controller provides the highest
stiffness. This is illustrated on the spindle stiffness at the
tool tip plot for the optimized μ-controller normalized with
respect to the stiffness of the corresponding PID controller,
as shown in the bottom plot of Figure 10.

IV. CONCLUSIONS

The presented simulation and experimental results show
the potential of μ-synthesized control of AMB machining
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Fig. 10. Stiffness of the spindle at the tool tip extracted from the hammer
test for PID and µ−controllers (upper plot); normalized with respect to
PID optimized µ-controller stiffness.

spindles for improved cutting performance. In particular,
the μ-controllers were able to realize substantially higher
broad-band spindle tip stiffness that could be achieved
(through manual tuning) by the PID + notch controller.

Perhaps a more important advantage is the structure
of the synthesis process provided by μ−synthesis. In
particular, the synthesis outcome is guided by choice of
performance functions and load models and the resulting
closed loop performance reflects these functions in a direct
manner. Consequently, there is less need for synthesis tricks
with the μ− approach. Further, the μ− approach provides a
convenient and rational repository for accumulating system
knowledge through model and weighting function refine-
ment. Finally, the μ− approach can provide guarantees of
robustness to wide ranges of system parameter such as the
operating speed range without requiring gain scheduling
or other special techniques: all μ−synthesized controllers
developed in the course of this study were stable over the
entire operating range while agressive PID + notch designs
did not reliably meet this requirement.
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