
REAL TIME DIGITAL CONTROL OF AN
ACTIVE MAGNETIC BEARING USING OPEN

SOURCE SOFTWARE
H. E. Alpaugh, F. C. Nelson, D. W. Fermental

Tufts University, Medford, Ma. 02150 frederick.nelson@tufts.edu

Abstract - A digital control system using a real time
variant of Linux is developed and implemented on a
bench-top rotor suspended on active magnetic bearings.
The combination of simple hardware and open source
software provides a useful educational and research
platform for digital control methods that is unencumbered
by proprietary constraints as well as one that is more cost
effective than available commercial systems. A real time
operating system must ensure that specific tasks are
executed at a fixed rate regardless of other system level
demands. This is achieved with special purpose kernels
that allow Linux to run as a low priority task within the
real time operating system. Digital filters are constructed
and coded in C, the native language of Linux. The
controller is implemented on an off-the-shelf Pentium 3
personal computer operating in a multiple channel
configuration at 10 KHz.

Index Terms –Active Magnetic Bearing; Digital
Control; RTLinux; Real Time Programming;
Rotordynamics

I. BACKGROUND

The use of open source software, in particular
Linux, as an environment for dynamic control law
development and research has several advantages,
especially in an educational setting in which students
may not be required to learn various proprietary
software tools. This paper presents work at Tufts
University, which uses open source Linux to control an
active magnetic bearing (AMB) and to access the data
stream from the controller. It is an expansion of earlier
work published in the Linux Journal [1].

There are several advantages for magnetic bearings
that justify their incorporation into an educational
setting; they eliminate physical contact between the
shaft and the support, minimize friction and eliminate
wear inherent with conventional bearings. A recent
application under development in Japan is an
implantable heart pump [2, 3]. Gas turbines are another
major area under consideration [4] .

II. TEST SETUP

A photo of the experimental test rig is shown in
Fig. 1. A physical schematic showing the relationship
between the various functional parts is shown in Fig. 2.
Each AMB consists of four pole pairs of laminated
stator assemblies with individual windings on each of
the poles. The bearing assembly includes inductive gap
sensors at the centerline of each pair of diametrically
opposed poles. These bearings support a 0.6 m. long x
9.5 mm. diameter stainless steel shaft driven by a
brushless DC motor.

A digital controller uses the signal from the gap
sensors to adjust the current from the power amplifiers
driving the magnetic coils to keep the rotating shaft
centered in the gap.

The digital controller is implemented on an Intel
based Pentium3 personal computer (PC) with a multi-
channel data acquisition board and a multi-channel
analog output board. The RedHat® version 7.2
distribution of Linux was selected as the operating
system (OS). The PC is not connected to a network.
The digital controller, described in this paper, replaces
the original analog controller. In 2002 the PC and
boards cost on the order of $5000.

Fig. 1–Photograph of Rig at Tufts University.

III. REAL TIME ARCHITECTURE

The heart of the Linux system is the kernel, which
provides the features and functions common to all
contemporary computer operating systems such as
multitasking, memory management and allocation, file
system supervision, I/O drivers and networking. To
accomplish this, the Linux OS controls the CPU to
optimize system resource use.

In contrast, a real time OS must ensure that a
specific task executes at a fixed rate regardless of the
many system level demands that burden the OS. To
meet this requirement, two organizations, FSMLabs [5]
and RTAI [6], have developed special purpose kernels
that run Linux as a low priority task within a real time
OS. This substantially reduces the timing from the
hundreds of milliseconds of desktop systems to the
microsecond range and allows the user to precisely
control the timing of critical control processes.

RTLinux®, developed by Michael Barabanov and
Victor Yodaiken in 1996, is currently marketed by
FSMLabs, a private company located in New Mexico.
They provide two versions: RTLinux/Free and
RTLinux/Pro. RTLinux/Free is used for this work.
FSMLabs holds a software patent on RTLinux, but the
patent license allows it to be used in projects under the
GNU General Public License (GPL) [7].

Conceptually, RTLinux splits the OS into user-
space and a real-time kernel. One may think of this as
two separate cities, walled off from each other and able

to communicate only by guarded pathways, such as real
time first-in-first-out devices (RT-FIFO’s). User space
is the familiar Linux system with all its friendly utilities
such as the vi editor, the gcc compiler and the exit
command. The real time kernel is the Spartan-like
environment which executes the real time task
regardless of the activities in user space.

Real time programs are coded as modules, not as
the main{} program construct of most C programs. A
real time program requires two functions: init_module
called when starting and cleanup_module when turning
off the real time module. Listing 1 shows the basic
construct for coding the real time module. The
init_module creates the entry point for the real time
module and allocates the RT-FIFO’s used to
communicate with user space. The real time code starts
at Periodic_function_entry and uses a while(1) code
construct to repeatedly run the control loop.

The real time module is started with the insmod
command. Much like the proverbial sorcerer’s
apprentice, once the real time module starts it can only
be stopped by the rmmod command or by literally
pulling the plug on the PC. It is quite unnerving to a
new user of RTLinux to discover that despite issuing
the exit command the controller continues to run.

IV. SOME CONTROL THEORY

First, the quantity to be controlled is instrumented
and measured, here it is the gap between the rotating

Fig. 2–Physical Schematic of Rig at Tufts University showing functional connections.

Power Amplifiers
(also supplies bias
current to each magnet)

bearing and the stationary magnetic poles of the
bearing. This gap is converted to a voltage with signal
conditioners and input to an analog/digital (AI) board.
In the test setup four separate gap sensor signals control
the rotating shaft. All four gap signal voltages are
sampled simultaneously and sequentially downloaded
to the PCI bus.

The gap is controlled by the current through the
magnets which are driven by eight power amplifiers.
The power amplifiers are controlled by the voltage from
a separate digital/analog output board. The analog
output (AO) board receives a digital input from the PCI
bus and converts it to a voltage which is held constant
until the next time period.

In the control loop the AO board receives the
processed signals from the AI board after numerical
processing. In an ideal digital controller both AI and
AO operations occur simultaneously at precise constant
intervals. Although it is impossible to achieve this
ideal, one must ensure that the code within the control
algorithm runs efficiently.

The numerical operations within the control
program include the history of the input, x, and the
output, y, of the controller for several previous steps.
These are stored in memory and shifted one increment
each time the control loop executes. The history is
incorporated in a difference equation:

y(n)=A*y(n-1)+B*y(n-2)+….+C*x(n) + D*x(n-1)+ …
(1)

where y(n) is the output of the controller for the current
time step, y(n-1) is the output of the controller in the
previous time step, y(n-2) is the output two steps in the

past, y(n-3) three steps in the past, and so forth to the
depth demanded by the sophistication of the control
algorithm. Similarly, x(n) is the input voltage for the
current time increment and x(n-1) is the input for the
previous increment. The particular control law
implementation determines the constant coefficients A,
B, C, D, etc. The bilinear transformation is used to
approximate the continuous control law (s-domain) in
the discrete time domain:

)1z(
)1z(

2
T

s
1




 (2)

where T is the sample time and z is the discrete time
operator.

In the magnetic bearing test setup y is the voltage
driving the power amplifier and x is the signal from the
gap sensor. Three previous values are used in the
magnetic bearing difference equation.

V. DIGITAL CONTROL IMPLEMENTATION

There are three possible approaches for selection of
the digital acquisition and control (DAC) boards:

1. Write the required board driver software.
2. Obtain a driver from an open source [8].
3. Use vendor supplied driver software.

The first and second options require a high level of
sophistication and expertise with Linux and data
acquisition programming. The second option reflects
the open source nature of the Linux system, but the
selection of vendors is limited and the latest products
are often unavailable. The third option, although
requiring the least expertise, places the user at the
mercy of the board vendor. The vendors supplying and
supporting the necessary drivers are limited and quite
often use the same sources as the second option. The
third option was chosen and two PCI bus multi-channel
DAC boards were purchased from United Electronics
Inc. [9]. These were supplied with the required real-
time Linux software drivers.

Before the digital controller was implemented on
the rotor rig tests were run to characterize the digital
system behavior. These tests were various program
codes to evaluate the conversion and timing interactions
of the boards.

Fig. 3–Analog to digital to analog conversion test showing
typical zero order hold behavior.

Digital
Control
ler

Gap Sensor
Conditioner

Power Amplifiers

Analog
Control
ler

#define PERIODIC_FREQ_HZ 10000.0
#define FRAME_PERIOD_NS (…);
pthread_t periodic_thread;
void *Periodic_function_entry(…)
{
 pthread_make_periodic_np(…);
//Initialize various parameters.
while (1)

{
// real time code loop here

pthread_wait_np();
}

}
int init_module(void)
{

// create the thread
 pthread_create(…);
 pthread_wakeup_np(…);
}
void cleanup_module(void)
{
 read_delete_np(…);

exit(0);
}

The primary functional test consisted of a C
language module designed and coded to read analog
data on the analog input board, convert it to floating
point variables, convert it back to a digital variable,
then output the signal via the analog output board. Fig.
3 shows a typical record of the performance from this
test. The main loop in the software is set at 10 kHz in
this plot; the analog input is a 1000 Hz sawtooth. The
output shows the step waveform characteristic of
sample-and-hold operation.

At the heart of the real time control program,
shown in abbreviated form in Listing 1, is the RTLinux
function, pthread_wait_np which suspends execution of
the currently running realtime thread until the start of
the next period. This thread is marked for execution
with pthread_make_periodic_np. The thread gives up
control until the next time period. The default
arithmetic in RTLinux is integer, but this control
application uses floating point which is turned on by
pthread-setfp_np .

The original analog controller is a simple lead
compensator implemented with a single order pole-zero
pair on each of the four bearings which is duplicated
with the difference equation:

y(n) = 0.7467*y(n-1)+ 4.6380*x(n) + 4.5189*x(n-1).
(3)

The analog and digital controls were connected in
parallel as shown in Fig. 4 to compare responses. Fig. 5
shows both the digital and analog controller responses
to a mechanical impulse on the shaft; they are virtually
identical. The digital loop operates at 10 KHz in a
MIMO (multiple input-multiple output) configuration
(4 channels input, 8 channels output).

VI. SOME ROTORDYNAMICS

As they say, the proof of the pudding is in the
eating. In other words, can the digital controller just
described control the rotor shown in Fig. 1 in a
predictable way? To answer this question, at least in
part, the controller model was linked to a low order
model of the AMB and rotor as a classical negative
feedback loop as shown in Fig. 2

Fig. 4–Single Axis of AMB showing analog and digital controllers.

Fig. 5–Oscilloscope traces of a single axis of the AMB comparing
analog (lower) and digital (upper) response to a mechanical impulse.

LISTING 1–SKELETON CODE OF REAL TIME MODULE.

The open loop AMB/rotor system (the plant) has a
pole in the right half plane, signifying that the system is
unstable. Simulation of the corresponding closed loop
system indicates that this pole migrates to the left half
plane when the controller gain reaches a value of 27;
hence the system becomes stable. Simulation further
indicates that the closed loop system will remain stable
until this gain reaches 169.

The agreement between the simulation and
experiment proved to be within ten percent. This level
of agreement extends to rotor spin speeds up to at least
1500 RPM. This suggests that the pudding may well be
worth the eating. One may also infer that the
fundamental resonance frequency can be varied by
changing the controller gain. It has not gone unnoticed
that this capability may have useful application in the
real world of rotordynamics.

VII. ADVANCED EXPERIMENTS

Alternate control laws are easily implemented in C
and experimentally verified. Higher order control laws
and different laws on the orthogonal axes have been
implemented. The rotor has successfully spun up to
11000 RPM, with the AMB under full digital control.
This presents an extreme test for the bearings.

Communication between Linux user space and the
RTLinux kernel is done with RT-FIFOs (first-in-first-
out files). Because RT-FIFOs are uni-directional two
separate files must be created for two way
communication with the control module. Function
rtf_create(fifo_id_no, fifo_length) allocates a buffer of
the specified size for the specified FIFO (/dev/rtf0,
/dev/rtf1,…./dev/rtf64). It must be called from
init_module(). Function rtf_destroy deallocates the
FIFO at the completion of execution. It can be called
from init_module() or clean-up_module().
The control law may be changed ‘on-the-fly’ by

changing the difference equation coefficients while the
real time module is running. The real time function
rtf_get(fifo_id,&variables,sizeof(variables)) within the
real time thread reads the coefficients in a non-blocking
mode. The user space code for sending the coefficients
to the real time module is:
ctl = open(“/dev/rtf1”,O_WRONLY);
write(ctl,&coeffs,sizeof(coeffs));
ctl = close(ctl);
This code is embedded in an NCURSES [10]

interface which allows the coefficients to be changed
with manual entry in a simple interactive interface as
the rotor is spinning.

In a similar way the data stream can be accessed in
the control program and sent to user space. The
appropriate function in the real time module is
rtf_put(framerate_rtfifo_id, volts, offset). In user space

cat /dev/rtf0 > file sends the output to a file. A simple
C program converts the data stream from the controller
to a readable form and stores it on a file. It is currently
implemented to acquire a slice of ten data items at
10000 continuous time intervals as the user requests.

VIII. SUMMARY AND CLOSURE

RTLinux is used to control a working rotor test rig
at Tufts University. The controller is realized on a
conventional Pentium3 personal computer using the
RTLinux extension of the Linux operating system. The
control algorithm is implemented using the C language
compiler. Various control laws can be implemented
and tried on an actual experiment.

An additional advantage is the elimination of a
target computer, since the real time OS operates on the
same processor as the host computer. Most
applications developed as digital control systems launch
as a startup executable on a proprietary real-time (RT)
target computer. The approach presented here differs; it
does not target a RT controller based on a proprietary
development system. It uses a Linux software
environment developed for applications in control and
data acquisition requiring hard real time (deterministic)
execution.

ACKNOWLEDGMENTS

This work was performed at Tufts University of
Medford, Massachusetts, USA. It was partially funded
by C. S. Draper Lab. of Cambridge, Massachusetts.

REFERENCES

[1] Alpaugh, H., Real-Time Control of Magnetic Bearings Using
RTLinux, Linux Journal, no. 135,
www.linuxjournal.com/issue/135, July 2005.

[2] Onuma, H., Masuzawa, T., Matsuda, K., Okada, T., Magnetically
Levitated Centrifugal Blood Pump with Radially Suspended
Self Bearing Motor, Proceedings of the Eighth International
Symposium on Magnetic Bearings, 26-28 August 2002.

[3] Onuma, H., Murakami, M., Masuzawa, H., Novel Maglev Pump
with a Combined Magnetic Bearing, ASAIO Journal, vol. 51,
no. 1, January/February 2005, pp 50-55.

[4] Clark, D., Jansen, M., Montrague, G., An Overview of Magnetic
Bearing Technology for Gas Turbine Engines, NASA/TM-
2004-213177, Aug.2004 (http: //gltrs.grc.nasa.gov).

[5] FSMLabs, Inc., Socorro, NM 87801 USA, www.rtlinuxfree.com.
[6] RTAI, Department of Aeronautical Engineering, Politecnico di

Milano (DIAPM), Milan, Italy, www.rtai.org.
[7] Free Software Foundation, Cambridge, MA, 02139 USA

www.gnu.org.
[8] Tennis, C., Data Acquisition with Comedi, Linux Journal, no.

124,www.linuxjournal.com/issue/124, August 2004.
[9] United Electronics Industries, Canton, MA 02021 USA

www.ueidaq.com.
[10] Padala, P., NCURSES Programming HowTo,

www.tldp.org/HOWTO/NCURSES-Programming-HOWTO.

	Real Time Digital Control of an Active Magnetic Bearing Using Open Source Software.pdf

