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Abstract – Active magnetic bearings present a new 
technology which has many advantages compared to 
traditional bearing designs. Active magnetic bearings, 
however, require retainer bearings in order to prevent 
damages in the event of a component, power or control 
loop failure. In the drop-down situation the design 
parameters of the retainer bearings have a significant 
influence on the behavior of the rotor. In this study, the 
dynamics of an active magnetic bearings supported 
electric motor when the rotor is dropped on retainer 
bearings is studied using a multibody simulation model. 
The retainer bearings are modeled using a detailed ball 
bearing model, which accounts damping and stiffness 
properties, oil film and friction between races and 
rolling elements. The model of the magnetic bearing 
system contains unbalances of the rotor and stiffness 
and damping properties of support. In this study, a 
computationally efficient contact model between the 
rotor and the retainer bearings is proposed.  

 
Index Terms – Retainer bearing, Drop-down simula-

tion, Ball bearing model, Contact model. 

I.  INTRODUCTION 

The area of Active Magnetic Bearings (AMBs) has 
recently been developed intensively because it represents a 
non-contact support system that has several advantages 
compared to conventional bearings. Due to improved 
materials, controller strategies, and electric components, 
the performance and reliability of AMBs is enhancing. 
Despite that, additional bearings, the so-called retainer 
bearings, have a vital role in the AMB applications. The 
most crucial moment when the retainer bearings are 
needed is when the rotor drops from the AMBs onto 
retainer bearings due to component or power failure [1, 2, 
3]. Without any information and knowledge of retainer 
bearings, there is a great chance that an AMB-rotor system 
self-destructs in a drop-down situation. For this reason, the 
objective of this research is to shed light on the design of 
the retainer bearings. 

Retainer bearings can be categorized into three types. 
Bushing type bearings are simple, and consequently, 
inexpensive and easy to repair if necessary. On the other 
hand, bushing type retainer bearings have some defects, 
which may restrict their use in some applications. In the 
bushing type retainer bearings the coefficient of friction 
can change during the rotor’s deceleration due to wearing 

of the sleeve. Wearing typically increases the coefficient of 
friction resulting in changes in the dynamic behavior of the 
rotor. For this reason, bushing type retainer bearings must 
normally be replaced after a number of high speed drop-
downs. Secondly, based on a low friction coefficient, 
bushing type retainer bearings are unable to dissipate the 
energy of the rotor without a whirling motion of the rotor. 
Retainer bearings of the rolling element bearing type are 
more complicated and, therefore, they are also more 
sensitive to impact. The rolling element bearing increases 
the power dissipation of the rotor during drop-down 
because the inner race rapidly achieves the angular 
velocity of the rotor. This may prevent the whirling motion 
of the rotor, as Fumagalli [4] noted. The last type of 
retainer bearing is a combination of the two mentioned 
above. This type has some beneficial features, as 
mentioned. However, it also has some drawbacks, such as 
a larger moment of inertia of rotating parts than rolling 
element bearing have. 

The most examined characteristics of retainer bearings 
are the stiffness, damping and the friction coefficients 
between the rotor and bearing. Influences of those 
coefficients are widely known as pointed out by Ecker [5], 
Zeng [6] and Ishii and Kirk [1]. Also force calculation and 
knowledge of the orbit of a rotor during contact are useful 
despite the used bearing type, as Fumagalli [4] showed. 
Cole et al. [7] examined the dynamic behavior of a rolling 
element bearing following rotor impact successfully. They 
pointed out that the inner race of the bearing should be 
allowed to accelerate as rapidly as possible in order to 
maximize the energy dissipation of the rotor. Raju et al. [8] 
performed a similar examination as Cole et al. [7] using 
solid brass backup bearings. Both of the results are useful, 
but only when designing similar retainer bearings as they 
examined. Dynamic behavior of bushing and rolling 
bearing type retainer bearings can be distinguished, as the 
investigations of Fumagalli [4] and Swanson et al. [9] 
proved. In this topic, a number of inventive examinations 
have been done. For example, Wang and Noah [10] 
examined an accurate model of a sleeve auxiliary bearing 
during the rotor’s drop-down. They concluded that the 
system should be designed to avoid operation at the speed 
of the free-free eigenmodes of the rotor. This should be 
accounted for in the drop-down situation, since it can lead 
to chaotic behavior. That is why a non-linear dynamical 
analysis is critical for the specific design of the rotor-
retainer bearing system.  



Common to all above-mentioned examinations is that 
they are based on the finite element model, rotor dynamic 
calculation or experimental studies. The objective of this 
work is to build a more accurate model of the AMB system 
during the rotor drop-down using a multibody simulation 
approach. In addition, parameters of retainer bearings are 
modified in order to find their contribution to the dynamic 
responses during the drop-down. The retainer bearings are 
modeled by using a detailed ball bearing model, which 
includes damping and stiffness properties, oil film and 
friction between the races and rolling elements. The model 
also includes combined inertias of rotating parts. The 
model of the AMB system includes unbalances of the rotor 
and stiffness and damping properties of the support.  

II.  DESIGN PARAMETERS OF BACKUP BEARING 

A. Stiffness of Bearing and Support 

Wang and Noah [10] noted that the higher the bearing 
stiffness, the higher the full clearance backward whirling 
speed and the amplitude of whirling after drop-down of the 
rotor. They proposed that the bearing support stiffness 
could be selected at a value close to the stiffness of the 
shaft in the auxiliary bearing design. Zeng [6] noted in his 
research that suitable soft support stiffness could reduce 
the nonlinear resonance and hence prevent the whirling 
motion of the rotor. One should also remember that the 
vibration amplitude must be small enough to ensure that 
the rotor does not touch other parts of the assembly. 

B. Damping of Bearing and Support 

Ishii and Kirk [1] noted that in the cases of very low and 
high support damping, a backward whirl occurs shortly 
after the rotor has dropped onto the backup bearings. The 
backward whirl may lead to a large contact force. 
Therefore, the optimum support-damping ratio Cbb/Csh, 
where Cbb is the backup bearing damping and Csh is the 
unsupported shaft damping, is between 30 and 100. In this 
range, the backward whirl does not occur.  

Ishii and Kirk [1] also noted that for small support 
damping (Cbb/Csh 5) the maximum rotor response and the 
maximum contact force are sensitive to the constraint in 
the rotational movement of the bearing. These kinds of 
constraints, such as the nonlinearity of the contact point, 
could exist for the AMB machinery, which operates for 
long periods without stops. 

≤

C. Friction Coefficient between Rotor and Retainer 
Bearing 

Ecker [5] noticed that for large values of friction 
coefficients, the rotor establishes a backward whirling 
motion. Also Fumagalli and Schwitzer [11] noted that a 
low coefficient of friction is a beneficial feature for the 
retainer bearings. It is important to note that the coefficient 
of friction is not always constant. This is due to wear that 
can occur during the interaction between the rotor and 
retainer bearings and, thereby, increase the value of the 
friction coefficient. A support with high stiffness will 

increase the friction coefficient rapidly and soon lead to 
full-clearance backward whirling motion of the rotor.   

Sun [12] examined thermal growth of the retainer 
bearing during the contact. He noted that rotor drop 
dynamics and thermal growth drastically change when the 
friction coefficient increases from 0.25 to 0.30. Because of 
a larger friction force, the orbit of a rotor extends after 
drop-down and the first bounce direction approaches the 
tangential direction of the contact point. Hence, it is 
important to find a threshold friction coefficient above of 
which the rotor enters into a high-speed backward whirl. 
Therefore, reducing the friction coefficient is critical to the 
stability of the rotor drop dynamics. A fine surface finish 
and powder or solid lubricants can be utilized on the 
contact area if it is acceptable in practice. 

III.  MODELS OF ROTOR AND BACKUP BEARING 

A. Model of the Rotor 

In this paper, the rotor is modeled using a multibody 
simulation approach. In this approach, the motion of each 
body of the system is described using generalized 
coordinates. For body i, the vector of generalized 
coordinates  can be written as [13]  i
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where  is the position vector of the origin of a local 
coordinate system of the body and  is the vector of 
generalized orientation coordinates. The orientation of the 
body can be described using, for example, Euler angles, 
Rodriguez parameters or Euler parameters. By using 
generalized coordinates, the global position of an arbitrary 
particle P on body i can be expressed in the following 
form: 

iR
iθ

 
i i i= +r R A ui ,    (2) 

 

where  is a rotation matrix that describes the rotation of 
the local coordinate system with respect to the global 
coordinate system and 

iA

iu  is the position vector of a 
particle in the local coordinate system. The velocity of an 
arbitrary particle can be obtained by differentiating (2) 
with respect to time as follows: 
 

i i i= +r R A ui  ,    (3) 
 

where i iA u  can be written as 
 

i i i i i i= −A u A u G θ ,    (4) 
 

where iu  is the skew symmetric matrix of vector iu . 
Matrix iG  defines the relationship between the angular 
velocities in the local body frame and the time derivatives 
of the orientation coordinates as follows: 
 

i i=ω G θi .     (5) 
 



It is important to point out that the expressions of the 
rotation matrix  and matrix iA iG  depend on the selected 
generalized orientation coordinates. By using Lagrange’s 
equation and an augmented formulation for the kinematic 
constraints, the system equation of motion can be written 
as follows [14] 
 

T
e+ = +qMq C λ Q Qv ,    (6) 

 

where M is the mass matrix, Cq the constraint Jacobian 
matrix, λ the vector of Lagrange multipliers, Qe the vector 
of generalized forces and Qv the vector of the quadratic 
velocity inertia forces, which contains the terms that are 
quadratic in the velocities, such as the gyroscopic and 
Coriolis terms. The mass matrix of body i can be obtained 
from the expression of the kinetic energy as follows: 
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where  is the volume of body i and M  the mass 
matrix. 

iV i

The externally applied forces must be defined as 
generalized forces that affect the system’s generalized 
coordinates. Using the principle of the virtual work, the 
generalized forces caused by globally applied forces F  
and moments T  can be expressed as [13] 

i

i
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where ( )i
e R

Q  and ( )i
e θ

Q  are the vectors of the generalized 

forces associated with the translational and rotational 
generalized coordinates of body i, respectively. Vector i

Pu  
defines the working point of the force in the local 
coordinate system. 

The kinematical constraint equations are functions of 
the system’s generalized coordinates and can be expressed 
as follows: 
 

( ),r t =C q 0 .     (10) 
 

The constraint Jacobian matrix can be obtained by 
differentiating the constraint equations with respect to the 
generalized coordinates as follows: 
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Equation (6) represents the dynamic equations of the 
constrained system. For numerical integration it can be re-
arranged as follows  
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where  
 

( ) 2c tt r r t= − − −q q qQ C C q q C q .   (13) 
 

The acceleration vector and the vector of Lagrange 
multipliers  can then be solved from (12). λ

B. Model of the Ball Bearing 

Sopanen and Mikkola [15, 16] presented and 
implemented a six degree-of-freedom dynamic model of a 
deep-groove ball bearing. The model of the bearing 
included descriptions of non-linear Hertzian contact 
deformation and elastohydrodynamic fluid film thickness. 
The geometry, such as the outer and inner diameter of the 
bearing and clearances, and material properties are given 
as an input to the model. The bearing force and torque 
components are calculated from the relative displacements 
and velocities between bearing rings. The torque around 
the rotation axis of the bearing is caused by friction and 
consists of three components: viscous friction torque, load-
dependent friction torque and seal friction.  

C. Model of the Contact 

Usually commercial multibody programs, such as 
MSC.ADAMS, include built-in contact models [17]. That 
kind of contact is usually created to be generalized and 
multipurpose, and therefore, the calculation of contact may 
require a significant computational capacity. Thus it is 
important to create a contact model that works effectively 
and foreseeably every moment during the simulation. In 
addition, in this way it is possible to create a friction model 
without insignificant parameters. Contact between the 
rotor and the bearing is modeled using a circle-in-circle 
contact, which is presented in Fig. 1. 
 

 
Fig. 1 Circle-in-circle contact. 

 

The radial contact force Fr is a function of the contact 
penetration and the penetration velocity. The radial contact 
force, which affects the rotor, can be written as follows 
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where K is stiffness of the contact and C is damping of the 
contact. The exponent e is the force-deflection 
relationship. The X- and Y-components of the radial 
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contact force Fr can be calculated using the geometry 
presented in Fig. 1. Radial displacement er and velocity  
between the rotor and the sleeve can be obtained from the 
displacements along the X- and Y-axes as follows 

re
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Clearance in the contact cd can be obtained from 
radiuses of the rotor r and the sleeve R as follows 
 

dc R= − r

g g

.     (17) 
 

To avoid discontinuities in the contact force, the 
velocity-dependent terms are smoothed using cubic 
polynomial expression, which is defined by (18). Thus, at 
zero penetration, the damping coefficient C is zero. The 
parameter d in (14) is the radial displacement when a 
maximum damping coefficient is achieved. The 
polynomial expression can be defined as 
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where  and 1h h h∆ = − ( ) (0 1 0g g g g g∆ = − − . Variable 
g is an independent variable, while g0 and g1 are the 
starting and ending values of the step. Correspondingly, h0 
and h1 are the initial and final values. 

The magnitude of the friction force, which acts on the 
center of the rotor and is perpendicular to the radial contact 
force, can be calculated as follows 
 

( ,0,0, ,1)diff
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where µ is the coefficient of friction between the rotor and 
bearings. Parameter ωdiff describes the difference of 
angular velocities between the rotor and the sleeves and 
can be written as diff r s= −ω ω ω , where ωr and ωs are the 
angular velocities of the rotor and the sleeves. The para-
meter ωl describes the threshold angular speed above 
which the friction coefficient µ achieves the maximum 
value. The friction force causes a friction torque Mµ, the 
direction of which is opposite to the direction of rotation. 

IV.  STUDIED STRUCTURE 

The studied structure is an electrical motor, whose rotor 
is supported by two AMBs. The structure includes also 
retainer bearings (6016 type, deep-groove ball bearing), 
which have a vital role in the case of emergency drop-
down. The test rotor can be seen in Fig. 2. Both AMB 
forces, FAMB1 and FAMB2, will shut down immediately when 
a fault situation occurs, which means that the collapsing 
magnetic field will not generate any forces at all. On the 
inner rings of the retainer bearings (RB1 and RB2 in Fig. 2) 

are sleeves that are rigidly connected to the inner rings of 
the bearings. The air gap between the sleeves and the rotor 
is half of the air gap of the AMBs. The outer rings of the 
retainer bearings are rigidly mounted on the bearing 
housings. For simplicity, the bearing housings have only 
two degrees of freedom, namely translations in the global 
X- and Y-directions. The housings are connected to the 
ground with linear spring-dampers in the above-mentioned 
directions. The stiffness coefficients are the same in both 
directions, as well as the damping coefficients. The 
dimensions of the motor are shown in Table I and 
properties of the used retainer bearings are shown in Table 
II. The direction of gravity g is the negative Y-direction. 
The unbalance mass UB is located in the middle of the 
rotor at an angle of 90º from the positive X-axis and at a 
distance of 97.5 mm from the rotation axis. The parameters 
of the contacts between the rotor and the sleeves are shown 
in Table III. 

 
Fig. 2 Diagram of the electric motor under investigation. Dimensions are 
in millimeters. 
 

TABLE I 
PARAMETERS OF THE STUDIED ELECTRIC MOTOR  

Mass of the rotor, m 97.3 kg 
Polar moment of inertia of the rotor, Ip 0.39 kgm2 
Diametral moments of inertia of the rotor, Id 2.82 kgm2 
Air gap between rotor and sleeves 300 µm 
Inner diameter of sleeve, dsi 60.6 mm 
Outer diameter of sleeve, dso 80.0 mm 
Gravity constant, g 9.80665 m/s2 

 
TABLE II 

PARAMETERS OF THE TYPE 6016 RETAINER BEARING 
Bore diameter, dB 80.0 mm 
Outer diameter, DO 125.0 mm 
Bearing width, B 22.0 mm 
Pitch diameter, dm 110.0 mm 
Ball diameter, db 19.05 mm 
Number of balls, z 10 
Diametral clearance, cd 15 µm 
Bearing damping coefficient, cb 0.25 Ns/mm 
Inner and outer race conformity, Rr 0.52 
Static load rating, C0 40 000 N 
Modulus of elasticity, E 206 000 MPa 
Poisson's ratio, ν 0.3 
Viscosity parameter, α 0.023 mm2/N 
Viscosity parameter, η0 0.04·10-6 Ns/mm2 
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TABLE III 
PARAMETERS OF THE CONTACT 

Stiffness coefficient of the contact, K 1·108 N/m 
Damping coefficient of the contact, C 1000 Ns/m 
The contact parameter, d 0.01 mm 
Exponent of the force-deflection relationship, e 1.1 
Threshold angular speed, ωl 10 rpm 

V.  SIMULATION RESULTS 

In this section, the effects of the friction coefficient and 
the stiffness and damping coefficients of the support on 
responses and contact forces are examined. The total time 
of the simulation is 1 second and AMBs are turned off 
when the simulation has proceeded 0.1 seconds. The initial 
angular velocity of the rotor is 10000 rpm. 

A. Effect of Friction Coefficient 

In this section the responses, the orbit of the rotor, the 
contact forces of the support, and the velocities of the 
sleeve are studied with different friction coefficients µ. The 
unbalance mass mUB is 1 g, the stiffness of the support Ks is 
5·107 N/m and the damping of the support Cs is 5000 
Ns/m. Fig. 3 shows the orbits of the rotor at the retainer 
bearing 1 when the friction coefficient is varied. The rotor 
starts to whirl when the friction coefficient between the 
rotor and the sleeves is 0.39. Fig. 3 shows that the orbit of 
the rotor becomes larger as the friction coefficient 
increases. This can be seen even before the rotor starts to 
whirl. In the whirling motion, the orbit of the rotor 
increases significantly. The largest motion does not occur 
immediately after the drop-down, as in the case of lower 
friction coefficients. The largest responses occur after 0.08 
seconds of the drop-down. After this moment, the 
responses, i.e. the orbit of the rotor, are stabilized. The 
orbit of the rotor does not stay inside of the static retainer 
bearing, the circle in Fig. 3, after the drop-down. This is 
due to the fact that the retainer bearings are assembled 
elastically on the ground and the bearing model describes 
the compression of the bearing, as well. 

The coefficient of friction has a vital role for contact 
forces if the rotor experiences a violent backward whirl, as 
can be seen in Fig. 4. If the rotor stays at the bottom of the 
sleeves, the contact forces are approximately the same 
during the deceleration in all cases. However, when the 
rotor started to whirl the contact forces increased 
significantly; the forces are two times larger than in the 
case where the rotor stays at the bottom of the sleeves. 
This should be accounted for in mechanical design. 

Angular velocities of the sleeves depend on two 
parameters: the friction coefficient and the skid between 
the sleeves and the rotor. If the discrepancy between the 
rotation velocities of the rotor and the sleeves is large, the 
sleeve accelerates more rapidly than if its rotation velocity 
is near the rotation velocity of the rotor. When the rotor 
starts to whirl, the sleeves accelerate much faster than in 
the case when the rotor stays at the bottom of the sleeves. 
The reason for this kind of behavior is the constant contact 
between the rotor and sleeves. Immediately after the drop-
down, the rotor bounces back and forth as can be noted in 

Fig. 3. This behavior causes steps to the curve describing 
the angular velocities of the sleeves. This can be seen 
especially in the situation where the rotor starts to whirl. In 
the simulation, it is assumed that the friction coefficient 
between the rotor and the sleeves is the same throughout 
the simulation. This may be unreal, because the friction 
coefficient changes depending on the rotor’s and sleeves’ 
temperatures and wearing. 
 

 
Fig. 3 Orbits of the rotor. 

 

 
Fig. 4 Contact forces of the support. 

B. Effect of Stiffness and Damping Coefficients of 
Support 

The examination that presents the rotor’s responses with 
the stiffness coefficient of the support Ks=5·106 N/m and 
Ks=5·108 N/m shows clearly that the stiffness of the 
support has a vital role when defining the response.  
Because the responses are directly dependent on the 
support’s stiffness and the contact forces on the responses, 
the stiffness of the support determinates the behavior of the 
rotor after the drop-down. This is the case especially when 
the friction coefficient is smaller than the threshold 
friction, as in this case (µ=0.25, Cs=5000 Ns/m). The 
largest response of the rotor in the Y-direction with 
Ks=5·106 N/m comes immediately after the drop-down of 
the rotor and its value is near to 600 µm. This is absolutely 
the maximum acceptable value of the responses, because 
the air gaps of the AMBs were 600 µm. In this case, the 



responses stabilized quickly unlike in the case of a harder 
supported rotor. This occurred despite the fact that the 
value of relative damping is the same in both cases. The 
comparison of the orbits between the harder supported and 
softer supported cases shows that displacements of the 
stiffer case are minimal compared to the softer case. This 
leads to the problem that the contact forces in the case of 
Ks=5·108 N/m are two times larger than in the case 
presented in the section above and almost five times larger 
than in the softer supported case in this section.  

The large damping coefficient of the support leads to a 
more stable chaotic response of the rotor after the drop-
down. In the more damped case, Cs=27900 Ns/m, the orbit 
of the rotor is smoother than in the low damped case, 
Cs=2790 Ns/m. This means that vibrations and noises are 
also smaller in the more damped case than in the low 
damped case. Correspondingly, the contact forces stabilize 
faster in the more damped case than in the low damped 
case. Based on the above-mentioned, the importance of the 
damping coefficient with stiffness coefficient is 
significant. 

VI.  CONCLUSIONS 

In this study, the dynamics of the AMB system during 
rotor drop-down in the failure incident was investigated 
using the multibody simulation approach. The studied 
structure includes the rotor, two AMBs and two retainer 
ball bearings which included sleeves on the inner rings. 
Using this model, the effects of retainer bearing parameters 
on system vibration were examined. The examination of 
the AMB system implies that the multibody simulation 
approach is an efficient procedure for the rotor-retainer 
bearing simulation. Particularly, the bearing model and the 
contact models in the multibody approach are efficient and 
suitable for drop-down simulation.  

The results of this paper are in good agreement with 
studies available in the literature. The AMB system under 
investigation needs a high friction coefficient between the 
rotor and sleeves before full backward whirling motion of 
the rotor occurs. This is in agreement with the previous 
examination of AMBs [18]. However, it is possible that in 
practical experiments the rotor can experience whirling 
motion with lower threshold friction than in the simula-
tions. This is due to the inaccuracies in the friction model. 
From a practical point of view, the inaccurate friction 
model is due to the use of a constant friction coefficient 
which did not account for the increase of the friction coef-
ficient resulting from thermal growing and wearing in slee-
ves [19]. The stiffness coefficient and the damping coeffi-
cient of the support play a vital role in the behavior of the 
rotor during and after the rotor’s drop-down. Particularly, 
the contact forces between the rotor and the retainer bear-
ings are dependent on the stiffness of the support.  

This research introduces important information for the 
design of retainer bearings of the physical prototype. The 
most important results were the critical values for the 
friction, stiffness and damping coefficients. The simulation 
results also shed a light on the magnitude of the contact 
forces during the drop-down of the rotor. Multibody 

simulation proved to be an effective tool when studying 
the contact dynamics between the rotor and the retainer 
bearings. The prototype of the studied structure is currently 
under examination and the results of this research will be 
verified experimentally in the near future. 
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