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.Abstract – This investigation deals with a small 
flywheel energy storage rotor supported by magnetic 
bearing system. A flexible model based on finite-element 
method is derived. Thereafter, we proposed making a 
mode separation using singular value decomposition 
method when the gyroscopic matrix is considered in the 
equation of motion. Further, the reliability of reduced–
order FEM model is verified and the five H∞controllers are 
designed to guarantee the whole stability up to 200Hz. The 
effectiveness of the reduced-order flexible model and the 
stability of the closed-loop system are verified by 
simulations. 

Index Terms – Magnetic Bearing System, Gyroscopic 
Effect, Singular Value Decomposition, H∞ Control, Mode 
Separation, Vibration analysis, 

I.  INTRODUCTION 

Most researches about magnetic bearing system have 
been presented based on rigid rotor which is usually 
considered as a concentration mass. However, in practice, 
numberless vibration modes exist in the rotor which has a 
distribution mass. They will bring the serious influence to 
stability of system. Meanwhile, the magnetic bearing with 
a large flywheel has a strong gyroscopic effect which 
makes the frequency of synchronous vibration of first 
bending backward mode low and approaches the 
synchronous vibration of the second rigid forward mode 
rapidly. So even if the controller of the rigid rotor 
considering the gyroscopic effect can be obtained, it is still 
difficult to make rotor rotate as a high speed for the above 
reasons.[1] 
This paper takes into account of the gyroscopic effect of 
the flexible rotor. It is difficult to derive a flexible model 
directly from an equation of motion. Here, we can obtain 
the model using a numerical analysis of finite-element 
method (FEM). Nevertheless, the order of derived FEM 
model is too high to be used in control system design. 
Therefore, a reduced-order model is derived following the 
principles of L.Meirovith[2] about the mode separation 
technique considering gyroscopic effect. The cholsky 
decomposition is also used in this reference. However, the 
matrix is a semi-positive definite which can not satisfy the 
condition of Cholsky decomposition when the rotor is in 

                                                           
 

the “free-free” condition. This paper proposes the singular 
value decomposition method instead of Cholsky 
decomposition method to acquire a reduced-order model 
which only includes four rigid modes and the first bending 
backward mode.  

According to the characteristics that the natural 
frequencies of bending mode will keep its invariant, 
namely, the bending modes do not depend on the controller. 
So we did a vibration analysis based on rigid model using 
a controller which can make the system stable to obtain the 
relation between the natural frequency and the rotational 
frequency. So the FEM model can be adjusted similar to 
actual system Finally according the relation, In order to 
guarantee the stability of  rotor up to 200Hz, five H∞ 
controllers are designed to compensate the gyroscopic 
effect, the stability and  effectiveness are verified by the 
simulation. 

 
II. THE MAGNETIC BEARING FLYWHEEL SYSTEM                

AND FEM MODEL 
 
Figure.1 shows a magnetic bearing with a flywheel 

rotor which is about 13kg in weight and 0.65 meter in 
height and 0.6 meter in diameter. Fig.1(a) shows a 
flywheel with black CFRP part. Fig.1(b) is an assembly 
figure that RaAMB and AxAMB are electromagnet which 
is located in the direction of axial and radial. The gap of 
magnetic bearing and rotor is about 250μm. 

To derive a flexible model, the rotor is considered as 
eight elements using the finite element method.[3] The 
flywheel was regarded as a concentration mass like Fig.2. 
Here, the mass of Element No.8 is regard to make an 
average each part at the bottom of the rotor. The 
electromagnet is arranged between element 2, 3, 7, and 8. 
Moreover, the damping and imbalance are not to be 
considered. So the equation derived from FEM as follows  
 Uqqq TKG ~~~~

=++ &&&M  (1) 

where, M~  is mass matrix, G~  is gyroscopic matrix, K~  is 
stiffness matrix, T~ is a matrix which shows the position of 
magnetic bearing. q is state vector. (M~ ,G~ ,K~ 3636×∈R  

436~ ×∈ RT , 436×∈ Rq ) 
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III. MODEL REDUCTION BASED ON SINGULAR 
DECOMPOSITION METHOD 

A. cholsky decomposition 

The order of FEM model are 72 as obtained from 
Eq.(1). It is necessary to reduce the orders of the model 
due to the limitation of computation speed of DSP. 
However, it is difficult to deal with a mode separation for 
obtaining a reduced-order model when a gyroscopic matrix 
exists in Eq.(1). So we adopt the method of L.Meirovitch 
to introducing a new state vector t][ qqz &= . The form of 
equation will be as follow. 
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From Eq(2), We can obtain eigenvalue problem in 
standard form such as  
 
 0=+ )(G)(M ** sss zz  (3)  

It is well known that the eigenvalues of Eq.(3) consist of 
n pairs of pure imaginary complex conjugates, 

,is rr ω= rr is ω−= . Correspondingly, the eigenvectors also 
incur in pairs of complex conjugates, ,rrr βαz i+= . 

n)1(rrrr L∈−= βαz i Where rα is the real part and rβ  is 
the imaginary part of the eigenvector rz . G~  is still a skew 
matrix from the characteristic of K and G. Next, to 
introduce rr iωs =  and rrr βαz i+=  into Eq.(2) and  
separate real part and imaginary part, we can acquire two 
forms of eigenvalue problem which is only related to x or 
y, such as  
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Here, ∗K  has been a symmetric positive definite matrix. 
We can obtain n pairs repeated eigenvalures rλ . Further, 
n pairs of 2n-dimensional eigenvectors rα and rβ  are 

correspond to same rλ . Here, to decompose ∗M , the 
cholsky decomposition  is used like Eq(5). Q is upper 
three-corner procession. 

 
 TQQM* =  (5) 
As we know, the condition for using the cholsky 
decomposition is that ∗M  must be positive definite and 
symmetric matrix. However, ∗M  become a semi-positive 
definite matrix in magnetic bearing system, when the rotor 
is in a “free-free” condition. Thus it is evident that the 
Cholsky decomposition is not suitable. 

B Model Reduction by Singular Decomposition Method 

For any matrix whose rank is r can be decomposed by 
the singular decomposition method such as Eq(6). Here, 
U  and V  are composed by the row vectors which are 
orthonormal vector. 

 mr

T

rrrnmn
VDUM
×

λ
×××

=*
 (6)  

From the definition of the singular value decomposition 
method, it is obvious that ∗M is not limited by the 
condition of positive definite. Therefore, we propose to use 
the singular decomposition method instead of cholsky 
decomposition method. Meanwhile, the row vectors of U  

are eigenvectors of 
T**MM and the row vectors of V  are 

eigenvectors of ** MM
T

, Further, existence of  an equation 

 
(a) Flywheel rotor and containment 

 
(b) Cross-sectional view 

Fig.1 Overview of flywheel system 

Fig.2  One dimensional finite element model 
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of 
TT **** MMMM =  due to  a real symmetric matrix ∗M , 

it is obvious that U  has the same row vectors as V  has. 
According to the above fact, we assume DUR = , so, the 
equation can be obtained as follow.  
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Although the form of Eq(7) is similar to Eq(5) of cholsky 
decomposition, it is different because R  is not a upper 
three-corner procession. Introducing the equation into 
Eq(4), we can acquire a new equation s as follow. 
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the eigenvector ][ rrr βαP = ,(r=1,2,....,n) is response to 
eigenvalue rλ Let us consider the line coordinates 
transformation ξPz r

T
r

−= R  and introducing it into 
Eq(2) , we can get a new equation as follow. 
 

** TRPψRGRΛΛPPθ

ψθ

11T11 ,,

where
)9(

−−−−− ==−=

+= fξξ&

 
 
 Here, ][ rr ζηξ = is a mode coordinate and θ is a block- 
diagonal matrix. Eq(9) is expressed in detail  such as 
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C. reduced-order model 

 In this magnetic bearing flywheel system, the 
operational rotor speed is 12000 rpm, however, when the 
rotor approaches 6000 rpm, synchronous vibration of the 
first bending backward mode is regarded as a main cause 
which influences the system stability. So the reduced-order 
model including only rigid modes and the first bending 
backward mode are considered based on Eq(9) such as 
below. 
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 where, 44

r
104

r
410

r
1010

r R,R,R,R ×××× ∈∈∈∈ DCBA . The 
bode plots of actual system (FEM model) represented by a 

solid line and the reduced-order model by a dotted line 
shown in Fig.3. It is clear that eigen values in terms of the 
rigid mode are zero like Fig.3(a) while the rotor is in free-
free condition. Fig.3(b) shows that both rigid mode and 
bending mode will be separated by a backward mode and 
forward mode while the coefficient spring is set and rotor 
is in rotation. The effectiveness of singular value 
decomposition can be verified through the result of mode 
separation. 

  

IV. VERIFICATION OF REDUCED-ORDER MODEL      
BY VIBRATION ANALYSIS 

According to the characteristics that the natural 
frequencies of bending mode will keep its invariant, 
namely, the bending modes do not depend on controllers. 
So we can verify the reliability of reduced-order model 
based on the relation between natural frequency and 
rotational frequency. To obtain the relation, we did the 
vibration analysis based on the rigid model. Here, a 
controller designed based on rigid model which can keeps 
the system stable is used to obtain the natural frequency of 
closed-loop system. Firstly, a sinusoidal signal as a 
reference is inserted into the system to get the frequency 
response while the rotor is in levitation. The coherence of 
the input and output data is shown in Fig.4(a). Because the 
value of the coherence is almost one in all frequency 
range, it seems that the reliability of data is high. it is 
seems that the reliability of data is high. Further, the bode 
plot of the transfer function of the closed loop system is 
shown in Fig.4(b), where the rigid modes and the fist 
bending mode can be identified clearly. 
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(a) Bode plot of free-free rigid-flexible rotor (0Hz) 
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(b) Bode plot of rigid-flexible rotor (100Hz) 

Fig.3 Mode separation 
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Next, we inserted a sinusoidal signal into the system 
as reference while the rotor is in rotation and its speed is 
increases by 10Hz. Each gain plot of frequency response is 
shown in Fig.5. Figure5.(a) shows the first rigid mode 
which had been separated into a forward mode and a 
backward mode apparently. On the other hand, the 
variation of the second rigid mode and the first bending 
mode can not be distinguished easily because of not sharp 
peaks at 20Hz. When the rotational speed of the rotor is 
more than 30Hz, the first bending backward mode can also 
be distinguished , but the behaviour of the second rigid 
mode are not appeared without the resonance peak which 
corresponds to the synchronous frequency of the rotor like 
(b),(c),(d). From these result; especially (d) where the first 
bending backward mode had approached 112Hz, thus the 

reason of the rotor touchdown near 110Hz is quite evident 
Figure.6 gives a summary of behaviour of the natural 
frequency based on the data of vibration analysis, where 
the simulation result is shown too. The sign ○ represents 
the experiment value and dotted line represents a 
calculation value. We can draw a conclusion that the 
reliability of the derived flexible model is high according 
to the variation of the first bending mode whose calculated 
value match the experiment value well.  

. 
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(a) Bode plot at ω =20Hz 
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(b) Bode plot at ω =40H 
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(c ) Bode plot at ω =60Hz 
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(d ) Bode plot at ω =80Hz 
Fig.5 Dynamic response in rotation 
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V. THE DESINGN OF ∞H  CONTROLLER 

In the magnetic bearing system, it is necessary to 
design a servo system. Further, to avoid the unstable 
influence brought by disregarded higher-order bending 
mode, the stabilization of robustness about spillover 
problem become important too. Thus, we use the H ∞ 
control theory to design a controller which can satisfy such 
demands. The Block diagram of generalized plant is shown 
in Fig.7. Firstly, a ∞H control without considering 
gyroscopic effect is designed while the rotor is in 
levitation. The weighting functions are such as Eq.(12). Ws 
is designed as the 1st order filter and Wt as the 2nd order 
filter and its bode plot shown in Fig.8(a).  
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Fig.8(b) shows the bode plot of the ∞H controller. It is 
understood that the controller is a servo controller   which 
has a strong rigidity for disturbance in the low frequency 
range. Fig.8(c) shows the bode plot of open and closed-

loop system applied the designed H∞ controller to actual 
system, the gain plot of the closed-loop system represented 
by a dotted line and open system without controller by a 
solid line. 

On the other hand, the controller designed in levitation 
was applied to high rotation speed like 5Hz or more, the 
system will become unstable due to the gyroscopic effect 
that is generated in rotation. Some eigenvalues of closed-
loop system will move to the right side of complex plane. 
To solve this problem ,We designed four H∞controllers 
again during all rotation range. Each controller is designed 
based on the model set the rotation speed as 50Hz, 100Hz, 
150Hz, or 200Hz. Fig.9 (a) shows the comparison result of 
the gain plots of four controllers where two peaks of gain 
exist. Because both the peak I in Fig.9 (a) and the first 
rigid backward mode in Fig.6 is moving to the lower 
frequency in common following the increase of rotation 
frequency, We can draw a conclusion that the peak I is 
mainly to control the first rigid backward mode. As the 
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Fig.7 Block diagram of generalized plant 
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same reason that the second peak II is mainly to control the 
first bending backward mode. Namely, the two modes 
have a larger influence on the stability of the system. 
Meanwhile, the high gain is necessary to be provided for 
the system stabilization. Fig.9(b) shows the gain plot of 
closed-loop system using the controller designed at 150Hz 
to be  applied the FEM model set ω =100Hz. It is obvious 
that the designed controller has a robustness to compensate 
the gyroscopic effect because all of poles lie in left 
complex plane like Fig.9(c). Finally, we can draw a 
conclusion that the stability of system can be guaranteed 
by switching the five H∞ controllers in rotation range from 
0 to 200Hz. 
 

CONCLUSION 

Magnetic bearing system is an extremely unstable 
system by nature, therefore, it is important to design a 
controller based on an accurate mode. The FEM model 
with gyroscopic effect was derived in the flywheel 
magnetic bearing system and a reduced-order modal is 
obtained by the singular value decomposition, the 
conclusion about the effectiveness of modal and controller 
is such as following. 
(1) The singular value decomposition is proposed instead 
of Cholsky decomposition, and the effectiveness was 
verified  
(2).The reliability of the FEM flexible model is verified 
based on the relationship between natural frequency and 
rotation frequency by vibration analysis. 
(3) The rotor is controlled by five ∞H  controllers which 
are scheduled by rotation speed in the range from 0Hz to 
200Hz. Each controller can stabilize the rotor in the range 
of 50Hz. 
(4) The first rigid backward mode and bending backward 
mode cause serious influence on system stability which 
can be seen from the two peaks existing in the gain plot of 

∞H controllers  
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(b) Bode plot of open and  
closed-loop system at 100Hz 
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