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.Abstract – In this paper a model and two control 
strategies are developed for the two radial active 
magnetic bearings (AMB) of an energy storage 
flywheel. The model is detailed, taking account of all 
significant phenomena in system. A linear control 
(proportional derivative control – PD control) and a 
nonlinear control (sliding mode control – SM control) 
based on the feedback linearization of the nonlinear 
magnetic bearing system are developed in order to find 
the best control for this system. 

 
Index Terms – 3-pole magnetic bearings, model, 

feedback linearization, linear control, sliding mode 
control.  

I.  INTRODUCTION 

In recent years energy storage flywheels have found 
wide applications in many areas such as uninterruptible 
power supplies (UPS), systems for power quality in power 
networks, improvement of the performance in wind 
generation systems and to avoid electric consumption 
peaks in high speed railway substations. 

Moreover flywheels promise an alternative to chemical 
batteries for space systems like artificial satellites because 
of their higher efficiency in terms of energy per mass and 
volume, and have become an important area of research for 
use in electric/hybrid vehicles. 

Main advantages of this technology are high energy 
density, long life, 90% depth of discharge and pulse power 
capability. 

Due to high rotation speed, energy flywheel systems use 
active magnetic bearings (AMBs) to provide non-contact 
suspension, which is necessary to minimize the friction 
losses and to achieve long life and maintenance free 
systems. 

Most of the magnetic radial bearings use the 8-pole 
arrangement because with this structure the magnetic flux 
coupling effects are neglected. In this case the force on 
each pair of poles can be express as a function of their own 
currents and the system can be modeled by two uncoupled 
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one degree of freedom (DOF) systems. Each 1-DOF 
system can be linearized and many linear control methods 
can be applied to this model in order to obtain desired 
behavior (see [7]). 

However the 8-pole arrangement impose the use of at 
least four independent power amplifiers, one for each pair 
of poles, and has the disadvantage of large energy losses. 

In present paper a 3-pole radial magnetic bearing is 
considered. The 3-pole arrangement has the advantage of 
lower power losses, inferior number of power amplifiers 
and much more space for heat dissipation and to place 
coils and sensors.  It seems the best way to achieve a low 
cost magnetic bearing system (see [1], [6]). 

Nevertheless a 3-pole system is inherent nonlinear and 
the flux coupling effects can’t be neglected. In the present 
paper feedback linearization technique with a linear control 
and a sliding mode control are considered. 

II.  SYSTEM DESCRIPTION 

The experimental prototype has been developed 
together with the companies Elytt Energy and Antec S.A. 
which are members of the present investigation project.  

This first prototype is intended to be an initial test for 
radial AMBs, but the goal is to achieve a full functionality 
kinetic storage system. 

Fig.1a shows the system overview, and in Fig.1b the 
radial magnetic bearing can be observed. The radial 
bearing has a 3-pole structure with 3 coils connected in 
star. 

 

Fig.1a  System overview 
(1-Radial AMB, 2-Flywheel, 
3-Frame, 4-Air Turbine) 

Fig.1b  3-Pole Radial Magnetic Bearing
(1-Coil, 2-Magnetic Yoke) 



 

The star connection of the coils let us use a 3-phase 
bridge inverter to power the system. The inverter is a       
3-phase IGBT bridge with a 125VDC Bus and it can 
provide up to 40A in order to get about 800N force.       
The control stage has sensors to check the phase currents, 
the VDC Bus voltage and the position of the shaft and it 
uses a fixed point Motorola DSP56F803BU80E processor 
where the different control algorithms were implemented. 
The flywheel has 30kg and it has been designed to rotate at 
30.000rpm storing 4 MJ of energy. It uses an air-turbine to 
move the shaft, but a reluctance motor is considered to be 
connected to the system in order to reach 30.000rpm and to 
provide a 100kW power for 20s when it will work like a 
generator. 

III.  MODEL OF  3-POLE  AMB 

In order to derive a model of 3-pole magnetic bearings 
the following assumptions are introduced:  

 No dispersion flux, all flux lines are closing from 
iron circuit to air gap. 

 Saturation curve is approximate by two segments 
(linear to saturation point and then the value is 
limited to that value). 

 Magnetic fields are constant in a section. 
 The air gap is constant along pole end. 

 

 
Fig 2. Magnetic circuit of the 3-pole AMB 

 
Based on these hypotheses and the structure of magnetic 

bearings which provides magnetic flux coupling between 
coils the following independent equations are used         
(see Fig. 2): 
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Where: g1, g2, g3 – air gaps between rotor and poles;      
N - number of coil turns;   µ0 - magnetic permeability of 
the air; B1, B2, B3 – magnetic field in air gaps;                               
i1, i2, i3 – currents in coils.  

Air gaps depend on shaft position as follows: 
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Where: g0 - nominal air gap; x, y - rotor displacement 
from center in Cartesian reference; 

The star connection of coils gives the equation:  
 

0321 =++ iii                                                                 (3) 
 

i3 current is replaced by 213 iii −−= , in all equations. 
The following equations are obtained for magnetic 

fields B1, B2, and B3 by solving system (1) and using (3): 
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Where new parameters introduced are: 
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Where 313221 ggggggDg ++= . 
Voltage equations for the three coils (Y connection) are: 
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Where v1, v2, v3 - phases voltages; R1, R2, R3 - coils 
resistances; φ1, φ2, φ3 - coils fluxes; vN - star point voltage.  

Induced voltages in coils are described by the 
following: 
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Where: A – pole area; N - number of coil turns;    
Using (4) in (7) and then replacing (7) in (6) the voltage 

equations of the coils (6) become: 
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Where we defined: 
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These terms are in fact induced voltages by the movement 
of the shaft. These voltages are small and they can be 
neglected, but we considered them in our model. They are 
obtained using (4) and (5). 



The following C1, C2, C3 variables are defined to an 
easier calculus: 
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System (8) is solved for the currents derivates di1/dt ,  
di2/dt and vN. Currents derivates obtained and mechanical 
equations lead to the following model of the  3-pole 
magnetic bearing: 
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where: ( ) ( ) ( ) ( )[ ]312123231 MMMMLLLMLNA −+−+−=∆  
and  m – total mass of the rotor;  Fx , Fy – bearing forces;  
FRx , FRy – resistive forces in x and y directions.  

Bearing forces are calculated according with (4) and the 
following equations: 
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Equations (5), (9), (10), (11) and (12) make up the 
model of 3-pole magnetic bearing. Resistive forces FRx , 
FRy are developed according to mechanical behavior of this 
specific flywheel.  

Saturation of the magnetic circuits was introduced as a 
limit of the magnetic fields. Because of coupled magnetic 
circuits, if one of the three magnetic fields reach the 
saturation value all three magnetic fields are limited to 
their actual values. 

As the model is quite complex a block diagram of the 
model is showed in Fig. 3. The numbers in brackets 
specify equations used.  

This model was used to simulate different controls, 
different behaviors of the system and losses. 

The model can be simplified using magnetic fields 
equation, 0321 =++ BBB , and B3 can be replaced in all 
equations by: 

 

213 BBB −−=                                                            (13) 
 

In this case L3 and M3 parameters are not necessary. 

IV.  FEEDBACK LINEARIZATION 

The 3-pole AMB is a nonlinear system. In order to 
develop a control for this system, the current model is 
considered because it is less complex than the voltage one 
described above (see [2], [6]). According to the model 
developed (see block diagram in Fig. 3) and using equation 
(13) in order to simplify the model, the block diagram of 
the current model is the following: 

 

 
Fig. 4  Block diagram of the current model 

 
The numbers in brackets specify equations used. 

Saturation is neglected.  
The diagram presented above (Fig. 4) suggests two 

possible approaches of a control. First one is to consider a 
linear system around the operating point x=0, y=0, which 
means to neglect the loop and to consider a linear 
dependence between currents and magnetic fields in (4), 
without any dependence of the position as in [5].  

 
Fig. 3 Block diagram of the 3-pole AMB model 



The control will have to decouple the two magnetic 
fields from forces in (12)+(13) block, in order to obtain a 
simple linear system. The second approach is to develop an 
exact feedback linearization loop which will cancel the 
nonlinear block (4) (in Fig.4) and with the same 
decoupling from magnetic fields and forces in (12)+(13), 
will lead to the same simple linear system as the first 
approach. We are going to present the second approach. 

 The current feed 3-pole AMB nonlinear system is 
described by the following state equations: 
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Where the state variables [ ]T
4321 ,,, xxxx=x , are: 

 xx =1 ,  xvxxx ===
..

12 ,  yx =3 ,  yvyxx ===
..

34 ,  
 vx, vy – shaft speed in x and y direction.  
The input vector is current vector [ ]T

21,ii=i , the output 

vector is position vector [ ] [ ] TT
31 ,, yxxx ==y  and output 

matrix is [ ]0101=C . 
By replacing B1, B2 from (4) in (12) and (13) we obtain 

the following form of the nonlinear system (14): 
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Where L1, L2, M1, M2 are functions of x and y from (5).  
System (14) with two inputs and two outputs has the 

relative degree 2 in a neighborhood of [ ]0000=x  
and it is input-state liniarizable. 

Feedback linearization of the nonlinear system (14) 
requires finding a coordinate transformation and feedback 
by designing the input in such a way the new closed-loop 
system to be linear and controllable. The new input we 
choose is the force vector, [ ]T, yx FF=F and we developed 
an equation set which made the transformation: 

 

( )Fx,i Ψ=                                                                   (16) 
 

The transformation (16) was developed as follows: 
Magnetic fields in air gaps B1, B2, B3 are calculated by 

solving (12) and taking account the magnetic coupling, 
0321 =++ BBB , the results are the following (only 

positive values are considered, their sign beeing asinged by 
a logical function): 
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Though there are necessary only the equations for B1 
and B2, a logical function was built based on this system in 
order to assign the signs for the magnetic fields, so the 
currents will have the correct sign to maintain (3). There 
are serveral possibilities to assign signs to magnetic fields, 
but we are going to present only one possibility. 

Here only positive values of roots are considered. In the 
first step, at time “zero”, the magnetic field which has 
greatest value is considered positive, and the other two has 
negative sign in order to maintain 0321 =++ BBB . After 
this first assignment the signs remain unchanged until a 
new magnetic field will have the maximum value of three 
fields. The new maximum field and the old one remains 
with the same sign and the other magnetic field changes its 
sign.  

With the values of magnetic fields calculated (17), and 
their signs assigned, the currents are obtained from (1) and 
(13) as follows: 
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Where air gaps between rotor and poles g1, g2, g3 
depend on x and y according to (2).  

Equations (17), (18) and (2) develop the transformation 
(16). Equations (18) insure the cancellation of nonlinear 
block (4) in Fig. 4 and equations (17) together with the 
logical function insure the decoupling of block (12)+(13). 
The block diagram of feedback linearization is the 
following: 

 

 
Fig.5 Block diagram of feedback linearization 

 
Using (16) in nonlinear system (14), this is transformed 

in a closed-loop linear system as follows: 
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Where A, B matrixes are controllable: 
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The linear system also allows the decoupled control on 
horizontal and vertical axes.  

V.  CONTROL  OF  THE  3-POLE  AMB 

A. PD control – linear control 

For x direction the linear system (19) is: 
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This system has a simple form and a PD controller or a 
state feedback control is the usual control for this system. 
In fact, in our case, when the desired position is x*=0, the 
PD controller is the same with the state feedback control 
and parameters of the state feedback are the same with 
prortional and derivative parameters of the PD controller. 
Controller parameters were calculated using root locus 
method and desired pulsation of the system was chosen 
according with the desired speed of the shaft because the 
vibrations, which give the resistive force FRx in our model, 
are proportional with the speed of the shaft. The control in 
y axis is identical with the one in x axis. The block diagram 
of the control is the following: 

 

 
Fig. 6  Block diagram of the PD control of 3-pole AMB 

 

B. Sliding Mode Control – nonlinear control 

The model of the 3-pole AMB has some uncertainties, 
like parameter variations, external disturbances and 
unmodelled dynamics, which are not taking account. Thus 
feedback linearization is not perfect for real systems and 
the linear control based on feedback linearization is 
possible not to achieve the best results.  

A robust control is necessary to avoid system 
uncertainties and we used a SM Control (see [2], [6]).     
As the system (19) is decoupled, two identical sliding 
mode controllers have been designed, one on each 
Cartesian axe. Theoretical and practical considerations 
about SM Control can be found in [3], [4] and [8]. 

In order to describe the control, the liniar system in x 
direction (21) is considered. 

The standard sliding manifold for this system is: 
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The control law must guarantee that the system 
trajectory intercepts sliding surface 0=s , in finite time 
and remains there for all the subsequent time. Once in the 
sliding surface the system progresses in a reduced dynamic 
mode called sliding mode. The equations for the sliding 
mode are system equations reduced to the sliding surface 
(22), and give the following 1st order differential equation: 
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The solution of (23) is: 
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Where x0 represents the interception point at t=T0 and 
parameter a must be positive to insure the correct behavior 
of the system inside the sliding surface.  

The next step is to design the control law. A Lyapunov 
method provides a natural setting for analysis. Stability to 
the sliding surface requires selecting a generalized 
Lyapunov function V(s,x,t) which is positive definite and 
has a negative time derivative. Let this function be: 
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which is clearly positive definite. The time derivative 
yields: 
 

( )[ ]212 /1)( axFmsxaxsssV x +=+==
....

                      (26) 
 

The control law to insure that (26) is negative for all 
values of s and x2 is the following: 
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There are only two parameters to chose in order to 
impose the behavior of the system. The first one a, is the 
time constant of a first order system. The second one K, 
has relation with how rapidly the system intercepts the 
sliding surface. Their values were selected by simulation in 
order to provide similar results with the linear control.  

Fig. 7 shows the block diagram of the sliding mode 
controller for x axis:  

 

 
 

Fig. 7  Block diagram of the sliding mode controller 
 
A control smoothing approximation is made by 

replacing sgn(s) function with sat(s/ε) function (ε>0) 
defined by: 
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This approximation is used to avoid control chattering 
around the operating point and the parameter ε is the one 
which controls this behavior. 

The sliding mode controller for y direction is identical, 
and the block diagram of the control is similar with the one 
presented in Fig. 6. 

VI.  COMPARISON BETWEEN CONTROLS 

Feedback linearization is a strong tool so PD Control 
has very good results. Simulations proved significant 
improvement when feedback linearization was used 
instead of linearization around operating point – in both 
cases we used the same PD control. 

A comparison between the PD control and SM Control 
applied on the system using feedback linearization is 
difficult. Both controls have strong and weak points and 
the purpose of the study is to obtain the best solution for 
high speeds of the shaft. In order to compare them, we 
tuned both controls (in simulations) to achieve almost the 
same time response with almost the same small overshoot 
at the step input (Fig. 8a). This may be a method to tune 
sliding mode controllers because there is no algorithm to 
tune them similar to linear controllers. With these 
parameters of the controllers, the results of different 
simulated and experimental tests were compared.  

Simulations proved that SM Control is better for 
parameters variation and PD Control is better for noisy 
signals, but the difference between results is quite small 
(Fig. 8b). 

 
 
 
 
 
 
 
 
 
 

Fig. 8a  Step response of both controls 
 

Fig. 8b  Controls with noisy 
signals for position information 

 
 

Experimental tests with the flywheel confirmed good  
simulated results for both controls and SM Control had 
better results because of the nonlinearities of the real 
system, but again the difference between results is small. 
The system was tested with zero speed of the shaft and low 
speeds (1500rpm). For the highest speed of the rotor we 
had, the duty cycle of the shaft was small and we expect to 
achieve high speeds with this system – Fig. 9.               
Both controls remain valid to be tested at high speeds in 
order to decide the appropriate one.  

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9  Shaft position at 1500rpm 
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