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Abstract. In this paper, a novel adaptive vibration 

control algorithm is proposed by introducing a 
parameter K. The asymptotic stable condition of this 
algorithm is mathematically derived. In the case of 
stationary disturbance, the algorithm is an unbalance 
vibration control for K=0, while for K=1, it becomes an 
adaptive vibration control with consumed current 
control. With a non-zero K, the present control 
algorithm is suitable for non-stationary disturbance. To 
validate the applicability of the present control 
algorithm, a series of experiments are carried out 
under stationary and non-stationary disturbance 
conditions with K ranging from 0 to 1. Our results 
indicate that it is possible to find an appropriate value 
for K to realize a relatively optimal control of both 
vibration and consumed current simultaneously. 

 
Index Terms – Magnetic Bearing, Unbalance Adaptive 
Vibration Control, Non-Stationary Vibration Control,  
Consumption Current Suppression, Zero Bias Control 

1.   INTRODUCTION 

One person of the authors proposes adaptive vibration 
control of magnetic bearing system(1) ,furthermore 
applying this method with the multiple periodic 
disturbances, the effectiveness was verified(2),(3). In this 
paper we propose the control algorithm of the 
non-stationary adaptive vibration control in the case that 
the rotational frequency changes, verify the performance 
through the experiment, in particular, in this research by 
introducing a new parameter K in non-stationary adaptive 
vibration control, the convergence conditions of the 
algorithm how changes, and a relation with the size of K 
and the error, it is considered. 

In order to improve markedly the efficiency of the 
flywheel system as an electric power storage system, the 
total consumption energy should be small. If the 
consumption current of AMB becomes small, the eddy 
current will be reduced, and also the conquer problems, 
such as generation of heat, and all effects should turn into 
a synergistic effect. The consumption current was reduced 
by applying the proposed non-stationary adaptive 
vibration control algorithm, and choosing the suitable 
parameter K paying attention to the error and control input 
of vibration control. Moreover, the suitable parameter K to 
which vibration becomes the smallest, and it examined 
how the suitable parameter K to which both consumption  
 

 

 
Fig.1 Proposed concept of new non-stationary adaptive vibration control 

system block diagram 
 
current and an error become to some extent small would 
be chosen. 

In this research, a consumption current became the 
smallest at the time of K= 1, and the closed loop system 
became so much stable even though the rotational speed 
was accelerated and decelerated.  Moreover, it has been 
considered why K= 1 is a suitable. 

2. THE NON-STATIONARY ADAPTIVE VIBRATION CONTROL 
WITH DISTURBANCE FREQUENCY CHANGE  

In this chapter, the non-stationary adaptive vibration 
control algorithm is expressed. Especially, the parameter 
K was introduced as the feedback loop system in this 
paper. The adaptive vibration control algorithm is 
considered in the cases of acceleration and deceleration for 
the non-stationary vibration.  

.2.1 Non-stationary adaptive vibration control  

In this section, the non-stationary adaptive vibration 
control algorithm with periodic disturbance is expressed. 
The block diagram of new concept and the non-stationary 
adaptive vibration control with periodic disturbance is 
shown in Fig.1. The extreme feature does not need the 
mathematical model of the plant in Fig.1, and, the 
parameter K is introduced, this parameter K is used for the 
adjustment of vibration control performance and 
consumption current. 

Here, variable the frequency depending on time is 
defined as Ω(t). d(t) is the single periodic frequency 
disturbance of the non-stationary vibration, the next 
expression is given as follows. 
 ))(cos()())(sin()()( tttttttd dd Ω+Ω= βα  (1) 
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Because the sensor noise always exists, the low pass 
filter was used for the reduction of such noise, here not to 
handle. The transfer function of the plant is defined as 
G(s)=Aejθ. Here, r(t) is the control input to reduce the 
unbalance vibration, it is defined as follows; 
 ))(cos()())(sin()()( tttttttr Ω+Ω= βα  (2) 

Here, α(t) and β(t) are the fourier coefficients which are 
corrected step by with the adaptive control algorithm. Y(t) 
is the system output value that is defined as follows; 
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However, A is the gain of the plant depending on the 
frequency, and θ is the phase. Furthermore, the signal after 
the summation is given by e’(t)=y(t)+d(t),and the input e(t) 
is written by, 
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e(t) is multiplied by the harmonic function, 
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And then, 
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Here, the cutoff frequency of the low pass filter should 
be ωB<<2Ω(t)t, in this adaptive algorithm, according to 
this procedure, the high frequency component of 2Ω(t) 
becomes small, the final output from the low pass filter 
becomes as follows;  
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Similarly, 
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Here, the adaptive rule does not depend on phase θ is 
applied, α(k)and β(k) are defined by 
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Here, µi is the step size. Furthermore, n1 (t) and n2 (t) 
are becomes as 
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where, 
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From Eqs. (9) and (10), it can be found that the output 
signal of the filter is dependent on the amplitude of the 
disturbance variation signal. ∆αd(k+1), ∆βd(k+1) are the 
changes in the amplitude of disturbance in time k ~k +1. 
respectively. However, because they changes at one 
sampling time when the frequency shows little change, 
they might be near zero therefore can be omitted. 
Furthermore, for different θ, if µi meets a certain 
condition, the asymptotic stability of the correction term of 
the non-linear system can be guaranteed (2). 

2.2 Asymptotic stability of non-stationary periodicity 
disturbance adaptive control algorithm 

According to figure 1, the conditions of the asymptotic 
stability of a closed loop control system are considered. 
Herein, the stable theorem based on theory of Lyapunov is 
employed. 

The following equation can be obtained form Eqs. (9) 
and (10) 
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Here, we assume  
 γ(k+1)N(k)=[µ1(k+1)n1(k)+µ2(k+1)n2(k)]  

and  
 |µ2(k+1)|≤ |µ1(k+1)|≤ |µ1(0)|≤|γ(0)|  
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γ as follows 

 

|)0(|
|)(|/|)()(||)0(|

| N(k)|/
 |(k)1)n(k(k)1)n(k||)1(|

21

2211

γ
γ

µµγ

≤
+≤

+++=+

kNknkn

k

 (13) 

Here, we assume V(k)=N2(k) is the Lyapunov function 
candidacy, then, the conditions of  asymptotic stability of 
the adaptive algorithm is V(k+1)-V(k)<0. from Eq.(12), 
we can obtain 
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we assume γη )2(
2 A

KA
+=  , if  0<η<2 then 

V(k+1)-V(k)<0 ,we obtained 
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The asymptotic stability of adaptive algorithm can be 
guaranteed if the initial values for µ1(k+1) and µ2(k+1) 
are given as follows; 
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Equation (16) indicates that the conditions for 
asymptotic stability changes with the parameter K. 

3. DESIGN OF ADAPTIVE CONTROL OF AN UNBALANCE 
VIBRATION SUPPRESSION TYPE AND CONSUMPTION 

CURRENT SUPPRESSION TYPE 

 

  

 
Fig.2 Proposed concept of new non-stationary adaptive vibration control 

system block diagram 

 

(a) An unbalance vibration suppression type design 

In the case of K= 0, the vibration control belongs to a 
general adaptive vibration control type. The purpose of 
adaptive algorithm is to generate the input signal r for the 
plant to yield an output signal y that can counteract the 
disturbance signal d to make error e=y+d approach zero 
asymptotically. 

(b) Consumption current suppression type design 

To control consumption current, a control strategy is 
designed as illustrated in Fig.2. Where, E is defined as  
 
 KreE +=  (17) 

The total input signal of the plant is F 
 reF +=  (18) 
 

If F approaches zero, the control current supplied to the 
plant P will decrease sharply. In addition, in the light of 
the asymptotic stability of algorithm depicted in chapter 2, 
it can be expected that E in equation (17) becomes zero for 
an arbitrary K within a certain range. However, in order to 
realize F=0, it is necessary to set K at 1, and to make 
E=r+e equal to F. Under these conditions, F in equation 
(18) approaches zero, making the algorithm a consumption 
current control one. 

(c) The design of unbalance vibration suppression and 
consumption current suppression type  

The above-mentioned adaptive control algorithm deal 
with either unbalance vibration by setting K at 0 or current 
control by setting K at 1, respectively. In fact, in addition 
to vibration control, properly controlling the coil current is 
of practical significance. For this purpose, a series of 
experiment are performed to adjust values of K between 0 
and 1. 

4. EXPERIMENTAL RESULT OF STATIONARY VIBRATION 
CONTROL AND NON-STATIONARY VIBRATION CONTROL 

Adaptive vibration control experiments were performed 
for stationary disturbance and non-stationary disturbance, 
respectively. In this research, adaptive vibration control 
was applied to all the radial of magnetic bearings. By 
mounting the algorithm on the DSP, unbalance vibration 
was adaptively controlled. First, the rotor turning at a high 
speed was stably surfaced with the zero bias PID 
controller; subsequently, a series of experiments were 
done at a stationary rotating frequency of 80Hz, and at 
non-stationary rotating frequencies varying from 75Hz to 
80Hz, respectively. 

4.1 Experimental result of stationary vibration control 

The experiment was carried out for stationary 
disturbance at frequency of 80 Hz. The experimental 
results obtained without unbalance vibration control are 
shown in figure 3. And the results for K=0, 0.3, 1 are 
illustrated in figures from 4 to 6. Shown on the left-top  
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Fig.3 stationary periodicity disturbance suppression control system
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Fig.4 stationary periodicity disturbance suppression control system (K=1) 
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Fig.5 stationary periodicity disturbance suppression control system(K=0.3) 
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Fig.6 stationary periodicity disturbance suppression control system (K=0) 
 
Side of each figure is the three-dimensional (involving 
both spatial and temporal dimensions) amplitude of the 
controlled rotor, and on the left-bottom side, the 
two-dimensional projection graph on the X-Y plane. 
Illustrated on the top-and bottom-sides are the output 
currents along the radial X axis. From these results, it is 
found that following the increase in K, although the 
amplitude of error signal is augmented, the consumed 
control current is pronouncedly reduced. For instance, in 
the case of k=0, the amplitude of error signal is very small 
but with a markedly increased control current. In contrast, 
in the case of k=1, the amplitude of error signal shows 
little difference but with a significant reduction in control 
current by up to 50 percent in comparison with the 
experimental results obtained without unbalance control.  

4.2 Experimental result of non-stationary adaptive 
vibration control 

Considering that the frequency of the secondary 
sympathetic vibration of the rigid mode is about 80Hz, 
experiments on non-stationary adaptive vibration control 
were carried out with the vibration frequency changing 
from 75 Hz to 80Hz. The experimental results for K=0, 0.3 
and 1 are plotted in figure 8~10, respectively. Shown in 
figure 8~10 , (a) is the results for acceleration speed of 15 
rpm/s, and in figure (b) is the results for acceleration speed 
of 30 rpm/s. For K=0, the adaptive vibration control is 
stable with very little amplitude of error signal under 
stationary condition; whereas, under non-stationary 
condition, the experimental results show markedly 
unstable oscillation of error signal, which is considered to 
result from the time needed to determine the transient 
frequency since it may elicit errors of frequency that are 
very likely to deteriorate the outcome of control. In 
contrast, if K is set at a nonzero value, such as 0.3 and 1 
defined in the present experiments, rotations of the rotor 
are stably controlled under non-stationary condition, 
which indicates that the new control algorithm proposed in 
this study is suitable for non-stationary vibration control. 
Moreover, the fact, from the experimental results,  
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Fig.7 Non-stationary periodicity disturbance suppression control system 
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Fig.8 Non-stationary periodicity disturbance suppression control system 

(K=1)  
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Fig.9 Non-stationary periodicity disturbance suppression control system 

(K=0.3) 
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Fig.10 Non-stationary periodicity disturbance suppression control system 
(K=0)  
 
that the present control algorithm help achieve 
simultaneous reduction in the amplitude of error signal 
and the magnitude of consumed control current in 
non-stationary vibration control, implicates that the 
present algorithm is of practical significance. 

5 CONCLUSIONS 

In the present study, the unbalance control with K=0, 
and the adaptive control with K=1 were devised and tested 
by vibration control experiments. For a nonzero K, the 
asymptotic convergence conditions of adaptive vibration 
control of the closed loop of system were mathematically 
deduced. Subsequently, in the experiments, the effect of K 
on control stability and consumed control current was 
systemically investigated by changing K from 0 to 1. 
Conclusions drawn in the present study are summarized as 
follows: 

 
(1) For stationary periodicity disturbance, in the case of 

K= 0, signal error is limited at the lowest level; the control 
is classified as an unbalance control type; and if K=1, the 
control changes into a consumed current control type 
when consumed current is controlled to be the smallest. 
When changing the value of K from 0 to 1, both the 
amplitude of signal error and the magnitude of consumed 
current can be, to some extent, reduced to relatively low 
levels, leading to a satisfactory stable vibration control. 

 
 (2) For non-stationary periodic disturbance, when 

K=0, even under a semi-ideal condition that the rotor 
accelerates slowly, the control becomes extremely 
unstable. In contrast, if K≠0, under a variety of 
rotor-acceleration conditions, the control can be well 
stabilized. Especially, in the case of k =1, the smallest 
consumed current can be achieved. 

 
(3) In the future work, it is of significance to find a way 

to enable the application of the adaptive vibration control 
algorithm with K=0 to non-stationary periodic disturbance. 
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