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Abstract— In this paper, we propose a data-based PID
controller design method using unfalsified control technique
with Support Vector Machine (SVM) and gap metric. SVM
and gap metric are utilized for adjusting the weighting
function of extendedL2 gain criterion. The effectiveness of the
proposed method is evaluated by experiments on a magnetic
levitation system and an active magnetic bearing system.

I. I NTRODUCTION

In this paper, we propose a new direct PID controller
design method using Support Vector Machine (SVM)[1]
and gap metric technique[2]. The proposed method applies
the notion of ”Unfalsification”[3] and extendedL2 gain
criterion. So far, the unfalsified control technique is ap-
plied to several applications, e.g. [4]-[7]. The open-loop
characteristics of these conventional applications are stable
or marginally stable. Here, we firstly apply the method
to unstable plants, i.e. a magnetic levitation system and
an active magnetic bearing system. In order to manage
unstable phenomena, we introduce SVM and gap metric
techniques to unfalsified control method.

The notion and the technique of ”Unfalsification” en-
able us to determine whether a candidate PID controller
achieves the desired performance specification or not
without performing additional experiments. Our proposed
method is one of the off-line iterative controller design
method. The effectiveness of the proposed method is con-
firmed by experiments on a magnetic levitation system and
an active magnetic bearing system.

II. PID CONTROLLER DESIGN BASED ON UNFALSIFIED

CONTROL WITH SVM AND GAP METRIC

In this section, a PID controller design method with
input-output data is proposed.

A. Fictitious input and performance specification

We consider one degree of freedom PID controllerK as
follows;

L(u) =
(

KP +
KI

s
+ KDs

)
L(r − y) (1)

=: K(KP ,KI ,KD)L(r − y), (2)

whereKP , KI andKD are positive real scalars,s indicates
derivative operator,u(t), r(t) andy(t) denote control input,
dereference signal, and sensor output respectively, and

L(f) indicates the Laplace transformation off(t). Suppose
an initial candidate controller set̂K as

K̂ := {K(KPi,KIi,KDi), i = 1, · · · ,m}. (3)

All candidate controllersK(KPi,KIi,KDi) in K̂ are
causal left-invertible. Accordingly, given input-output data
u(t) and y(t), we can uniquely calculate the following
fictitious referencer̃i(t) which makes each controller
K(KPi,KIi,KDi) admissible,

r̃i = L−1

{
s

KDis2 + KPis + KIi
L(u) + L(y)

}
, (4)

where letL−1(F ) be the inverse Laplace transformation
of F (s). The signal̃r is different from the actual reference
signalr. Using unfalsified control theorem[3], the fictitious
reference signal̃r is utilized for evaluating control perfor-
mance.

Let L2e be the set of functions which have bounded
values of extendedL2 norm defined as follows;

||f(t)||L2[0,τ ] :=

√∫ τ

0

f(t)2dt. (5)

For (r̃i, y, u) ∈ L2e ×L2e ×L2e, our performance specifi-
cation is defined as

||w1 ∗ (y− r̃i)||2L2[0,τ ] + ||w2 ∗u||2L2[0,τ ] ≤ ||r̃i||2L2[0,τ ], ∀τ ,
(6)

wherew1 andw2 are weighting function for which repre-
sent control specification, and∗ denotes convolution, i.e.

||w1 ∗ (y−r̃i)||2L2[0,τ ] =
∫ τ

0

[w1(t−τ) · {y(τ)−r̃i(τ)}]2dt,

||w2 ∗ u||2L2[0,τ ]|| =
∫ τ

0

{w2(t− τ) · u(τ)}2dt.

In case the plant is time invariant and modeled byP (s),
the performance specification (6) becomes equivalent to

∣∣∣∣
∣∣∣∣

W1S
W2KS

∣∣∣∣
∣∣∣∣ ≤ 1 (7)

whereWi = L(wi) for i = {1, 2} andS := 1/(1 + PK).
Notice that the performance specification (6) is plant model



free representation which differs from the expression of (7).
Now, we can define performance index functionJ as

J(r̃i, y, u) := ||r̃i||2L2[0,τ ] − ||w1 ∗ (y − r̃i)||2L2[0,τ ]

−||w2 ∗ u||2L2[0,τ ]. (8)

B. Support vector machine and gap metric

In order to design a high performance controller,w1

and w2 in (6) must be properly specified. However, the
design of these weights is time consuming and needs
large experience. Especially, in the case of active magnetic
actuators control, these weights design becomes much more
difficult due to the unstable property of the plant. Here, we
propose an adjustment method for these weightsw1 and
w2 by means of support vector machine and gap metric.

Briefly, we summarize support vector machine technique
in this subsection. A Hyper plane classifying datax ∈ Rm

which takesy = 1 or y = −1 is defined by

D(x) = (w · x) + w0, (9)

wherew is normal vector andw0 is a constant. In order
to define unique hyperplane, we introduce the following
additional constraints.

(w · x) + w0 ≥ +1 if yi = +1 (10)

(w · x) + w0 ≤ −1 if yi = −1 (11)

Then, the hyperplane is denoted by

yi[(w ·wi) + w0] ≥ 1 i = 1, · · · , n. (12)

Since minimal margin between hyper plane and the datax
is 1

‖w‖ , we can see that the maximization of the minimal
margin is carried out by solving the following optimization
problem;

min
w,w0,α

Q(w, w0, α) (13)

Q(w, w0, α) =
1
2
||w||2 −

n∑

i=1

αi{yi[(w · xi) + w0]− 1}
(14)

whereαi ≥ 0 are Lagrange variables. For optimal variables
w∗, w∗0 andα∗, the following conditions hold.

∂Q(w∗, w∗0 , α∗)
∂w0

= 0, (15)

∂Q(w∗, w∗0 , α∗)
∂w

= 0. (16)

By these conditions, the following relations hold.
n∑

i=1

α∗i yi = 0, α∗i ≥ 0, i = 1, · · · , n (17)

w∗ =
n∑

i=1

α∗i yixi, α∗i ≥ 0, i = 1, · · · , n (18)

Kuhn-Tucker condition is denoted by

α∗i [yi(w∗ · xi + w∗0)− 1] = 0. (19)

Substituting (17) and (18) into (13), the following opti-
mization problem is obtained onα.

α∗ = arg min
α

Q(α) (20)

Q(α) =
n∑

i=1

αi − γ
1
2

n∑

i=1

n∑

j=1

αiαjyiyj(xi, xj) (21)

n∑

i=1

yiαi = 0, αi ≥ 0, i = 1, · · ·n (22)

By using the optimalα∗i of the optimization problem (20),
optimal hyper plane is derived by

D(x) =
n∑

i=1

α∗i yi(x · xi) + w∗0 . (23)

Introducing nonlinear functionsϕj(x), j = 1, · · · ,m
which map datax into m dimensional space, we can denote
the hyperplane by

D(x) =
m∑

j=1

wiϕj(x). (24)

Even for this nonlinear mapping case, we can similarly
obtain the optimal hyperplane as follows;

D(x) =
n∑

i=1

α∗i yi(ϕ(x) · ϕ(xi)) + w0 (25)

If there exists the following kernel functionH, the cal-
culation of ϕ(x) can be avoided, and we can reduce the
computational burden, so-called kernel trick.

ϕ(x) · ϕ(xi) = H(x, xi) (26)

These kernel functions must satisfy the Mercer condition.
Here, we utilize the following Gaussian kernel.

H(x, y) = exp
(
−||x− y||2

σ2

)
(27)

Now, the optimal hyperplane is described as follows;

D(x) =
n∑

i=1

α∗i yiH(x,xi) + w0. (28)

If J(r̃i, y, u) < 0 holds, the controllerK(KPi, KIi,
KDi) satisfies the performance specification. Atkth itera-
tion of unfalsified controller design procedure, a controller
Kk to be implemented to the plant is defined by

Kk(KPk∗ ,KIk∗ ,KDk∗) := arg min
i

J(r̃i, y, u). (29)

Using thisKk, datau andy are acquired for the next design
procedure. However, in case the controllerKk cannot sta-
bilize the plant, we should suppose the performance index
J is not adequate. In order to carry out the adjustment of
the performance index function, we utilize SVM technique
to derive a hyperplane classifyingKk in falsified set. The
hyperplane by SVM theory is reformulated to the curved
line J = f(i) as shown in Fig. 1 (a).



  

(a) (b)

Fig. 1. Performance index adjustment using SVM with gap metric

The horizontal axes in Fig. 1 are the controllers index
which is sorted by the gap metric value. That is , the
following condition holds;

||K(KPi, KIi,KDi)−Kk−1||G <

||K(KPj , KIj ,KDj)−Kk−1||G, ∀i < j, (30)

where|| · ||G denotes gap metric[2]. The calculation of the
gap metric is summarized as follows;

||P1 − P2||G := inf
Q∈H∞

∥∥∥∥
[

M1

N1

]
−

[
M2

N2

]
Q

∥∥∥∥
∞

(31)

where
Pi = Ci(sI −Ai)−1Bi + Di (32)

[
Mi

Ni

]
=




Ai + BiFi BiR
− 1

2
i

Fi R
− 1

2
i

Ci + DiFi DiR
− 1

2
i


 (33)

Fi = −R
− 1

2
i (B∗

i Xi + D∗
i Ci) (34)

Xi = Ric

[
Ai −BiR

− 1
2

i D∗
i Ci −BiR

− 1
2

i B∗
i

−C∗i R̃
− 1

2
i Ci −(Ai −BiR

− 1
2

i D∗
i Ci)∗

]

Ri = I + D∗
i Di (35)

R̃i = I + DiD
∗
i (36)

where ”Ric” means Algebraic Riccati Equation solution.
This SVM classification enables us to avoid unnecessary

experiments by unpromising controllers whose closed loop
characteristic is similar to the unstable controller.

Now, renewing the performance index functionJ asJ ·Φ
where

J · Φ(i) := J(r̃i, y, u)− |f(i)|, (37)

we can obtain an adjusted controller, i.e.arg min J ·Φ, for
the implementation to the plant as shown in Fig. 1 (b).

C. Unfalsified PID controller design method with SVM

In this subsection, we briefly summarize our proposed
design procedure.

[Unfalsified PID Design Procedure with SVM]

1 DefineK̂, I := {1, 2, · · · ,m} andKprev := ∅.
2 Select an implement controllerK1 ∈ K̂, k = 1.
3 while I 6= ∅ andKk /∈ Kprev

 

 

(a) (b)

Fig. 2. Experimental setup of magnetic levitation system

 
 

(a) (b)

Fig. 3. Frequency responses of weighting functions

4 Acquire datau(t) andy(t) with controllerKk.
5 for i ∈ I
6 Solve r̃i :=L−1

{
s

KDis2+KP is+KIi
L(u)+L(y)

}
.

7 Calculatef(i) with SVM and gap metric
8 (In casey(t) is stable,f(i) = 0.)
9 if J · Φ(i) > 0
10 I := I\{i}.
11 endif
12 endfor
13 imin := arg min

I
J · Φ(i).

14 Kk+1 := K(KPimin ,KIimin ,KDimin)
15 Kprev := Kprev ∪ {Kk}.
16 k := k + 1
17 endwhile

Due to the stopping criterion in Step3, the procedure is
terminated when the all of the candidate controllers are
falsified or the same controller is selected again. In case that
the all controllers are falsified, i.e.I = ∅ , it is necessary to
restart the procedure after enlarging the candidate controller
setK̂ or changing the performance specification.

III. E XPERIMENTS

The effectiveness of our proposed method is evaluated
by the experiments of a magnetic levitation system and an
active magnetic bearing system.

A. Magnetic Levitation System

Fig. 2 shows the experimental setup of our magnetic
levitation system. The steel ball is levitated by the electro-
magnetic force. The mass of the steel ball is 4.2[kg], The



 

Fig. 4. Fictitious reference signal
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Fig. 5. (a) Performance index function and (b) Gap metric sorting

diameter of the steel ball is 100[mm]. The gap between coil
and steel ball is measured by Eddy current sensor and the
maximal gap is 10[mm]. We utilize MATLAB xPC Target
System for controlling the electro-magnetic force.

The frequency domain representations of the weighting
functions w1 and w2 are determined by frequency re-
sponses of stabilizing controllers. The weighting functions
are derived as follows;

W1(s) =
0.5s + 0.4

s
, (38)

W2(s) =
2s + 1

125s2 + 1625s + 1500
. (39)

The frequency responses concerningW1(s) andW2(s) are
shown in Fig. 3 (a) and (b) respectively.

We set the sampling time 0.002[s] and the number of
data 3000. The pseudo derivative s

s/5000+1 is utilized. We
consider the following initial candidate controller set;

KP = {200 + 200i | i = 0, · · · , 9}
KI = {500i | i = 0, · · · , 9}
KD = {4 + 8i | i = 0, · · · , 9}

The number of candidate controllers is 1000. We select
an initial implemented controller as{KP ,KI ,KD} =
{400, 500, 4}. Based on the experimental data by the
implemented controller, we calculate the fictitious reference
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Fig. 6. Specification adjustment with SVM and Gap metric

signal by (4) and evaluate performance index functionJ
by (8), (38), (39) and (40) for each candidate controllers.
As the result of these evaluation, a controller{KP = 200,
KI = 500, KD = 4} takes the best value ofJ . Fig. 4
shows the time response of the fictitious reference signal
r̃1 of the controller, i.e.

r̃1 = L−1

[
s

4s2 + 200s + 500
L(u) + L(y)

]
. (40)

Next, we fix integral gainKI at the best value of
J for intensive optimization onKP and KD gain. In
this case,KI is fixed at 500 and the number of the
candidate controllers can be reduced to 100. The value of
performance index functionJ is shown in Fig. 5 (a).

The time response of the controller{KP = 200,
KI = 500, KD = 4} is unstable. Then, we adjust the
performance index functionJ . First, the gap metric values
are calculated by (31)-(36) for each candidate controllers
and the controller index is sorted by the gap metric value.
The sorting result is shown in Fig. 5 (b).

We set the parameter of Gaussian Kernelσ = 0.1 in
(27). Carrying out the optimization with SVM software[1],
we obtain optimal classification as shown in Fig. 6 (a),
where the region colored by magenta is unfalsified. Based
on the optimization, we can derive the additional term
f in performance index function (37). In order to avoid
unnecessary penalty, we setf = 0 for J > 0. The resultant
f is shown in Fig. 6 (b). The adjusted performance index
functionJ ·Φ is shown in Fig. 6 (c) andJ ·Φ versus original
controller index number is shown in 6 (d).

By these procedure, 8 controllers are falsified. The next
controller which takes the best value ofJΦ is decided
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Fig. 7. Specification adjustment with SVM and gap metric

TABLE I

UNFALSIFIED DESIGN PROCEDURE RESULTS

# (KP , KI , KD) Stability Falsified controllers #
1 (400, 500, 4) Unstable 0
2 (200, 500, 4) Unstable 8
3 (200, 500, 20) Unstable 17
4 (200, 500, 52) Unstable 23
5 (1600, 500, 4) Unstable 27
6 (800, 500, 20) Stable 35
7 (200, 500, 20) Unstable 41
8 (200, 2000, 20) Unstable 45
9 (200, 3500, 20) Unstable 48
10 (400, 2500, 12) Unstable 54
11 (800, 1000, 20) Stable 55
12 (400, 4500, 20) Unstable 56
13 (800, 1000, 20) Stable 57

as {KP = 200, KI = 500, KD = 20}. Experimental
data is collected by this controller and similar procedure is
repeated as shown in Fig. 7 (a)～(d).

Table I shows the iterations, implemented controllers,
stabilities and the number of falsified controllers. In this
case, after 13 iterations, the proposed algorithm is termi-
nated. As the result, 57 controllers are falsified and we
obtain a high performance controller whose time response
is shown in Fig. 8 (b). The resultant performance index is
shown in Fig. 8 (a).

B. Active Magnetic Bearing

Our experimental setup is shown in Fig. 9 (a). The rotor
schematic is shown in Fig. 9 (b). The mass and moment of
inertia of AMB rotor are 1.56[kg] and1.04×10−3[kg·m2].

 

 

(a) (b)

Fig. 8. (a) Performance index value and (b) Time response
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(b)

Fig. 9. Experimental setup of AMB rotor

The mass and moment of inertia of Disk 1～5 are 1.293[kg]
and9.53× 10−4[kg·m2]. Flexural rigidity EI of the shaft
is 209[N·m2].

First, in order to design weighting functionsw1 andw2

in (8), we derive mathematical model of AMB rotor system.
Figure and model of AMB is shown in Fig. 10 (a) and (b)
respectively, where bias currentI1 and I2 are 3.8[A] and
1.17[A], resistanceR is 0.81[Ω], equilibrium gapW is
0.4 × 10−3[m]. The inductanceL1 and L2 are described
as follows;

L1 =
Q

X + W − x
+ L0, (41)

L2 =
Q

X + W + x
+ L0, (42)

where the parametersQ = 6.34 × 10−6[m·H], X =
2.34×10−4[m] andL0 = 8.55×10−3[H] are identified by
experiments. The total massM is 10.34[kg]. The gravity
accelerationg is 9.8[m/s2]. The model of AMB rotor
system is now described as follows;

ẍ =
Q(I2

1 + I2
2 )

M(X + W )3
x+

QI1

M(X + W )2
ĩ1+

QI2

M(X + W )2
ĩ2, (43)

˙̃i1 = − R

Lc
ĩ1 − QI1

(X + W )2Lc
ẋ +

1

Lc
e, (44)

˙̃i2 = − R

Lc
ĩ2 − QI2

(X + W )2Lc
ẋ +

1

Lc
e, (45)



  

(a) (b)

Fig. 10. Active magnetic bearing

 

Fig. 11. Frequency response of weighting functionW2(s)

Lc =
Q

X + W
+ L0. (46)

Considering±3[%] error for the parametersR, W , W ,
X and L0, we can estimate the perturbation of the plant
as shown in Fig. 11. Then,W2(s) depicted by dotted line
in Fig. 11 is determined to cover all the perturbation as

W2 =
900

s3 + 900s2 + 2.7× 105s + 2.7× 107
. (47)

On the sensitivity function, we consider the following two
specifications;

W11 =
0.7s + 0.005

s
, W12 =

0.7s + 0.25
s

. (48)

Notice thatW12 is tighter thanW11. We set the sampling
time 0.002[s], the number of collected data 5000 and the
candidate controllers set as follows;

KP = {2000 + 2000i | i = 0, · · · , 9}, (49)

KI = {2000 + 2000i | i = 0, · · · , 9}, (50)

KD = {5 + 5i | i = 0, · · · , 9}. (51)

The number of initial controllers is 1000. Carrying out
the proposed design procedure, we designed 4 controllers
as summarized in Table. II, where(1.6e4, 8e3, 45) indi-
cates(KP ,KI ,KD) = (16000, 8000, 45). In the case of
W12, i.e. tighter specification case, we can confirm the
numbers of falsified controllers increase for each initial
contollers cases. All resultant controllers can stabilize the
rotor system and achieve the highest operation speed. These

TABLE II

UNFALSIFIED DESIGN PROCEDURE RESULTS

Initial controller Specification Iter. Falsified# Final controller

(1.6e4, 8e3, 45) W11, W2 12 65 (1.4e4, 2e3, 15)

(6e3, 8e3, 10) W11, W2 11 72 (1e4, 2e3, 15)

(1.6e4, 8e3, 45) W12, W2 15 179 (1e4, 1.4e4, 15)

(6e3, 8e3, 10) W12, W2 16 132 (1e4, 1.8e4, 20)

 

Fig. 12. Rotate operation of AMB rotor

facts indicate that the proposed method is effective for
AMB controller design. The rotate operation by one of the
resultant controller(1e4, 1.8e4, 20) is shown in Fig. 12.

IV. CONCLUSION

In this paper, we proposed a data-based PID controller
design method using unfalsified control technique with
Support Vector Machine (SVM) and gap metric. SVM
and gap metric were utilized for adjusting the weighting
function of extendedL2 gain criterion. The effectiveness
of the proposed method was confirmed by experiments on a
magnetic levitation system and an active magnetic bearing
system.
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