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Abstract – In industrial rotational machinery, it has 
been required that a long span and a high-speed rotor 
are designed in order to improve efficiency and reduce 
costs.  In concerning many flexible rotors, the 1st 
bending critical speed and the 2nd bending critical 
speed have been passed, but never the 3rd critical 
speed.  In this study a flexible rotor having the 3rd 
bending critical speed within the rated speed was 
designed, and was tested to pass the 3rd bending 
critical speed, owing to fine tuning of Active Magnetic 
Bearing controller and accurate balancing method. 
 

Index Terms – Active Magnetic Bearing, Mode 
Separation Control, Sensitivity Function, Q-value, 3rd 
Bending Critical Speed 

1.  INTRODUCTION 

  An industrial rotating machine supported by active 
magnetic bearings (AMBs) requires a lighter rotor turning 
at a higher speed.  For example, for a centrifugal 
compressor, a type of industrial rotating machine, not 
only can its mechanical performance be improved by 
making the rotor fast, long, and light, but its 
manufacturing cost can also be reduced [1].  
Accordingly, the industry is now hoping for a major 
advance in mechanical performance and a substantial 
reduction in the manufacturing costs by making faster, 
longer, and lighter rotors.  To satisfy these requirements, 
it is essential to establish the technology for an 
AMB-supported flexible rotor to pass its high order 
bending critical speed that corresponds to the 2nd 
bending mode or higher.  However, although there have 
been a few reports concerning rotors corresponding to the 
2nd bending mode [2,3], there are no reports concerning 
rotors corresponding to the 3rd bending mode. 

We have worked on the technology for an 
ABM-supported symmetrical and flexible rotor passing 
its critical speed that corresponds to the 3rd bending 
mode.  This paper describes (1) how to design a control 

system based on mode separation control and a controller 
based on a phase shift [4], (2) the results of an evaluation 
of the stability margin of the control system according to 
the sensitivity function standardized according to ISO 
14839-3 [5], (3) the results of an evaluation of the 
damping performance of the control system by measuring 
the Q-value (response magnification) using the Q-value 
function and the half power point [6], and (4) the results 
of a test in which the rotor passes the critical speed 
corresponding to the 3rd bending mode in the 
mode-by-mode balancing method [3]. 

2.  EXPERIMENTAL SYSTEM 

2-1. Structure of Experimental System 
  Figure 1 shows the structure of the experimental 
system.  Radial AMBs are placed at the both side, a 
thrust AMB at the far left, and a non-contact flat motor at 
the far right.  Furthermore, placing the AMB and other 
components in a vacuum chamber enables operation in 
vacuum. 
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Fig. 1 Structure of experimental system 
 
2-2. Modeling 
  Figure 2 (upper part) shows the structure of a flexible 
rotor.  The length is 1,310 mm, the mass is 31.4 kg, and 
the shaft diameter is 37 mm.  The rotor is symmetrical in 
longitudinal direction, and the purpose of the five disks of 
the rotor in the figure is to attach correction weights. 
  The equation of motion of the rotor AMB, ignoring the 



damping term, is as follows: 
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where 1X  is the AMB boundary displacement at the 
both side, 2X is the inner mode displacement other than 
the AMB boundary displacement, M  is the mass matrix, 
K  is the stiffness matrix, AMBQ  is the control force 
which is generated by the AMB according to the 1X . 
Coordinate conversion of equation (1) using the mode 
conversion matrix Φ  provides the equation of motion 
after applying the mode synthesis method as shown in 
equation (2), and this Finite Element Method (FEM) 
model is reduced to the seven degrees of freedom (7DOF) 
model by using the component mode synthesis method 
[4]. 
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where ΦΦ=Φ MM t  is modal mass matrix of mode 
synthesis method， ΦΦ=Φ KK t  is modal stiffness matrix 
of mode synthesis method. 
  In this study, we used the mode synthesis method to 
create a 7 DOF model and analyzed up to the fifth 
bending mode, expected to be the spill-over point.  
Figure 2 (lower part) shows the vibration modes of the 
rotor when a free-free condition is given.  Since the 
AMBs are supported flexibly, the rotor should have 
vibration modes as indicated in Figure 2 at each critical 
speed.  The rotor is found to be a flexible rotor with the 
third bending critical speeds 5CN  up to the rated speed 
of 300 rps.  1CN , 2CN  are the rigid mode’s critical 
speeds, and 3CN , 4CN , 5CN  are the bending mode’s 
critical speeds. 
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Fig. 2 Mode of the rotor (free-free condition) 

3.  CONTROL SYSTEM 

3-1. Controller Configuration 
In this study, we designed a control system based on 

mode separation control method [4].  This control 
method allows us to design individual controllers for each 
separated system and widens the bandwidth between 
adjacent natural frequencies, which also makes it easy to 
insert a variety of filters into the controllers. 

Figure 3 shows a block diagram of our control system.  
A divider separates the signals 1x  and 2x  derived from 
displacement sensors arranged close to the left and right 
radial AMBs into the displacement px  of the translating 
mode and the displacement tx  of the tilting mode.  
These separated signals are changed to the mode control 
signals pv  and tv  via the controllers rpG  and rtG .  
After this, the control signals 1v  and 2v  are regenerated 
for the left and right AMBs and a power amplifier (PWM) 
drives them according to the control signals. 
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Fig. 3 Block diagram of control system 

 
3-2. Controller Design 
  We designed a controller that consists of a main PID 
control circuit, a filter coping with instability caused by 
spill-over, and an phase shifter keeping the phase lead at 
the plant’s natural frequency (positive damping) after the 
mode separation [4]. The transfer functions of the 
translating system controller rpG  and the tilting system 
controller rtG  designed are as follows: 
 

NFPBF1PID GGGGrp ××=  (3) 

LPF2PSF2PID GGGGrt ××=  (4) 
 
where, 
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PIDG  is a PID control circuit, PBFG  is a Phase Bump 

Filter (PBF), NFG  is a Notch Filter (NF), and PSFG  is a 
Phase Shifting Filter (PSF), LPF2G  is 2nd Low Pass 
Filter (2nd LPF).  The other parameters are shown below: 
 

( )1.0211 ×= πτ , ( )25212 ×= πτ , ( )85213 ×= πτ , 
( )35214 ×= πτ , ( )590215 ×= πτ , ( )665216 ×= πτ , 
( )110217 ×= πτ , ( )135218 ×= πτ , ( )400219 ×= πτ , 
3.01 =α , 1.02 =α , 25.03 =α , 63.04 =α , 22.01 =ζ , 
11.02 =ζ , 09.03 =ζ , 2.04 =ζ  
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(b) Tilting system 

Fig. 4 Bode plot of controller 
 

Figure 4 shows the results of measuring the controller’s 
transfer functions rpG  and rtG  in the translating and 
tilting systems as well as the gains opG  and otG  of 
the open loop transfer functions.  The gain crossover 
frequency of the open loop transfer function indicated by 
a black circle corresponds to the natural frequency of the 
closed loop transfer function.  The shaded area shows 
the phase lead that the controller gives to the control 
system. 

As shown in Figure 4(a), we designed the translating 
controller to keep the phase lead (positive damping) at the 
natural frequencies ( niω  where 5,3,1=i ) of the 
translating control system after the mode separation.  We 
designed the tilting controller as well—at the natural 
frequencies ( niω  where 6,4,2=i ) of the tilting system 
as shown in Figure 4(b). 

4.  STABILITY MARGIN 

  With the sensitivity function, ISO FDIS 14839-3 
defines criteria for evaluating the stability margin of the 
AMB supported flexible rotor used in this study [5].  
The sensitivity function is represented by the following 
equation: 
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where oG  is the open loop transfer function.  Figure 5 
indicates the measured sensitivity functions spG  and 

stG  of the translating and tilting control systems.  
Figure 5(a) tells that the translating control system has a 
maximum sensitivity of 11 dB at 1nω  (Zone B specified 
in the ISO standards).  Figure 5(b) says that the tilting 
control system has a peak sensitivity of 15 dB (Zone D) at 

2nω .  According to ISO 14839-3 for safety operation, 
the tilting system must be reviewed to change the 
sensitivity at 2nω  from Zone D to Zone B or better.  As 
a result, we measured the Q-value to evaluate the 
damping performance of the control system and to 
confirm whether or not to conduct a rotational test. 
 

Se
ns

iti
vi

ty
 g

ai
n 

(d
B

)

20

0

-20
10 100 1000

Frequency (Hz)
10 100 1000

Frequency (Hz)

GstGsp

ω n3
ω n6

ω n4
ω n511dB

ω n1

ω n7

15dB
ω n2

 
(a) Translating system (b) Tilting system 

Fig. 5 Sensitivity function 

5.  Q-VALUE EVALUATION 

5-1. Proposing of Q-value Function 
  ISO 10814 defines the criteria for evaluating the 
Q-value (resonance magnification) of a machine rotating 
at higher than its critical speed.  The Q-value is 
represented by the following equation: 
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where ζ is the damping ratio.  Evaluating the Q-value is 
equivalent to estimating the damping performance of a 
control system at its resonance frequency. 



In general, a rotor may be difficult to run at a high 
order bending critical speed since the Q-value is high and 
a sharp unbalance in the resonance appears.  To turn a 
flexible rotor smoothly, it is necessary to measure the 
Q-value for prior evaluation.  Accordingly, in this paper, 
we propose a new Q-value function that allows us to 
estimate the Q-value from the open loop transfer function 
of a rotor being suspended statically [6]. 
 
5-2. Theory of Q-value function 
  Figure 6 is a block diagram of an AMB-supported rotor 
system.  The Q-value function can be derived from the 
sensitivity function when )(sH  is the transfer function 
of the flexible rotor except for the inertial term and the 
plant *

pG  is the inertial term given by altering Figure 
6(a) to 6(b).  The procedures for finding the Q-value 
function are described below. 
• Step 1: Derive *

pG  from the measured pG  of only the 
flexible rotor.  Note that the gain Γ  and the phase 
∆  are estimated from the difference between the 
model’s and measured plant transfer functions. 

 

∆×Γ
=

)(
)(* sG

sG p
p  (7) 

 
• Step 2: Derive )(sH  from *

pG . 
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Note that the modal mass *m  can be given by finding 
the eigen-value problem of the model.  Assuming that 
the eigenvector of a translating system is 

[ ]5311 φφφ=Φ , equation (9) holds from an 
eigen-value problem point of view.  Solving equation (9) 
presents the modal mass ΦΦ= p

t* Mim . 
 

Φ=Φ pp
2 KMniω , 5,3,1=i  (9) 

 
Identify the natural frequencies niω  (where 5,3,1=i ) 

from the open loop transfer function opG  shown in 
Figure 4(a) and make calculations to find the translating 
system’s modal mass *

im  as follows: 
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In the same fashion, derive the tilting system’s modal 

mass from the natural frequencies niω  (where 6,4,2=i ) 
of the open loop transfer function otG  shown in Figure 
4(b).  
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• Step 3: Find a new open loop transfer function *
oG  

from )(sH . 
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• Step 4: Define the sensitivity function of *

oG  as the 
Q-value function qG . 
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Fig. 6 Block diagram of AMB-rotor system 

 
5-3. Evaluation of Q-value function 
  Table 1 and Figure 7 show the resulting Q-value 
function and the Q-value measured by the half power 
point.  The former represents the Q-value as a peak 
amplitude at the critical speed iCN  (where i = 1 to 5).  
Figure 7 says that the Q-value function provides almost 
the same results as the half power point.  Accordingly, 
we believe that the proposed Q-value function is highly 
reliable and practical.  Table 1 shows that the Q-value of 
the 3rd bending mode appearing at the critical speed 

5CN  has a maximum value of 13.  From our experience, 
we are confident that balance corrections allow the rotor 
to pass 5CN  if the Q-value does not exceed 20. 
 

Table 1 Q-value 
 1CN 2CN  3CN  4CN 5CN

Peak of Gq  3.6 6.0 2.1 3.9 13 
Half power 4.2 3.4 1.6 3.3 12 
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Fig. 7 Q-value function 



6.  ROTATIONAL TEST 

6-1.Theory of Modal Balancing 
  High-frequency bending modes require precise 
balancing using a correction weight.  In this study, we 
made balancing in the modal balancing method that uses 
eigen-modes based on the stiffness of an AMB [3].  
Figure 8 shows eigen-modes actually measured when the 
AMB stiffness is about 1 × 106 N/m. 
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Fig. 8 Mode of the rotor (AMB stiffness = N/m101 6× ) 

 
  Converting the coordinates of equation (1) with the 
eigen-modes { }521 ,,, ϕϕϕ L  shown in Figure 8 
presents a modal model represented by the following 
equation: 
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where ΨΨ=Ψ MM t  is modal mass matrix, ΨΨ=Ψ KK t  
is modal stiffness matrix, UtΨ is modal unbalance matrix, 

CWtΨ is modal matrix representing the correction weight, Ω  
is rotational speed, and Ψ is mode conversion matrix. 

In a modal model, each mode is represented as 1DOF 
system, which gives a mode-specific unbalance to each 
system.  Accordingly, the weight ratio of a correction 
weight can be found so that it compensates for the 
unbalance indicated in the right side of equation (12), that 
is 0tt =Ψ+Ψ CWU .  For example, the weight ratio of 
mode 3ϕ  can be derived from the following equation 
that compensates for the unbalance at the mode 3ϕ  
without affecting the modes 1ϕ  and 2ϕ  for which the 
balancing has already been made. 
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Solving equation (13) under 042 == CC WW  presents the 
weight ratio of correction weights.  In the same fashion, 
the weight ratio of mode 4ϕ  can be derived from the 
modes 321 ,, ϕϕϕ  and 4ϕ , and 03 =CW  as well as that of 
mode 5ϕ  from the modes 521 ,,, ϕϕϕ L .  Figure 9 shows 
these calculation results. 
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Fig. 9 Ratio of correction weight 

 
6-2.Pass Test of Third Bending Critical Speed 
  Figure 10 shows the result of rotational test with the 
2nd bending mode ( 4ϕ  mode) balanced.  We made 
balancing for the 1st and 2nd bending modes based on the 
mass ratios of correction weights shown in Figures 9(a) 
and 9(b).  As shown in Figure 10, the vibration 
amplitude increased at 280 rps after the rotor passed the 
critical speed 4CN  corresponding to the 2nd bending 
mode since the 3rd bending mode was unbalanced.  
Therefore, we made a decision that it was difficult to pass 
the critical speed 5CN  = 295 rps corresponding to the 
3rd bending mode, and made balancing for the 3rd 
bending mode at 280 rps.  Placing a trial weight on each 
disk according to the mass ratio shown in Figure 9(c) 
changed the vibration amplitude at 280 rps from A to B as 
shown in Figure 10.  The vector AB  shows the effect 
of the trial weight.  We made balancing by finding the 
weight and mounting angle so that the vector pointed to 
the origin of the polar plot. 

Figure 12 shows the result of rotational test with the 
3rd bending mode ( 5ϕ  mode) balanced by the correction 
weight shown in Figure 11.  It states that the vibration 
amplitude at 280 rps can be reduced from A to C.  As a 
result, we have succeeded in enabling the rotor to pass the 
critical speed 5CN  that corresponds to the 3rd bending 
mode. 



Figure 13 shows a resonance curve resulting from the 
rotational test conducted after balancing.  ISO 14839-2 
defines the criteria for unbalance resonance amplitudes at 
the critical speed of an AMB-supported rotor.  Zone A, 
the best performance, specifies 30 % of the AMB gap or 
less for the vibration amplitude. 

If the resulting vibration amplitude is 150 ppm −µ  or 
less, our rotor is ranked as Zone A.  In this experiment, 
we were able to find the real eigen-modes from 
calculations under a boundary condition of 1 × 106 N/m 
and to make balancing through the modal balancing 
method in order to reduce the unbalance vibration 
amplitude to 150 ppm −µ  or less (Zone A specified in the 
ISO standards) at all the critical speeds within a rated 
speed of 300 rps.  As a result, the rotor reached 300 rps 
safely.  Moreover, our method can cope with only the 
3rd bending mode without affecting the other modes for 
which balancing has already been made. 
 

0 15010050

150

0°

90°

180°

270°

100

NC4

280 rps
ABTrial

 (µm p-p)

 
Fig. 10 Nyquist plot (passing the 4CN ) 
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Fig. 11 Correction weight (5-plane balance) 

 

0 150100

50

150

0°

90°

180°

270°

100

NC4

A
Fig6.19, 280rps

NC5, 290rps

296rps

 (µm p-p)

 
Fig. 12 Nyquist plot (passing the 5CN ) 
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Fig. 13 Resonance curve 

7.  CONCLUSION 

  In this study, we have conducted elementary work to 
establish the technology of turning and controlling an 
AMB-supported symmetrical and flexible rotor so that it 
can safely pass high order bending critical speeds.  Our 
conclusions are described below. 
(1) We have proposed how to design a control system 

based on mode separation control method.  
Moreover, we have confirmed that our control 
system is effective through an evaluation of the 
stability margin based on the sensitivity function 
conforming to the ISO standards and of the damping 
performance according to the measured Q-value. 

(2) We have proposed a new Q-value function for 
evaluating the Q-value in advance and confirmed its 
effectiveness through a comparison with 
measurement results given by the half power point. 

(3) We have demonstrated that the modal balancing 
method is effective through a test in which the rotor 
passes the critical speed that corresponds to the 3rd 
bending mode, and succeeded for the first time in 
enabling an AMB-supported rotor to safely pass the 
3rd bending critical speed 5CN . 

We believe that our study not only presents important 
data for making rotors that are faster, longer, and lighter, 
but also contributes to the requirements for designing 
rotors incorporated into industrial AMB-supported 
rotating machines. 
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