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Abstract— Stability is a primary robustness requirement.
The stability margin is therefore a measure of the amount
of system deviation from some nominal, stable configuration
that can be tolerated before the system becomes unstable.
The notion of ‘system deviation’ can imply many forms and
mechanisms: engineers must, perforce, focus on those most
likely to afflict a given system in order to obtain a meaningful
assessment of relative stability.

This note discusses the stability margins of rotor-AMB sys-
tems. Particular attention is focused on the output sensitivity,
whose peak amplitude is a common measure of sensitivity
and is adopted by the new ISO standards for AMB systems.
One objective is to illustrate that many common sources of
instability in rotordynamic systems may be completely missed
by this measure and, further, that controller design targeting
reduction in output sensitivity may, in fact, lead to very
poor robustness to these mechanisms. Several examples are
developed to show that, while limiting the sensitivity peak is
a necessary condition for rotor-AMB system stability, it may
not be sufficient to ensure commercially viable robustness
to common destabilizing mechanisms such as aerodynamic
cross-coupling or hysteretic damping in the rotor.

The primary observation is that, if the AMB is the
destabilizing mechanism, then the output sensitivity will reveal
it, but if the destabilizing mechanism is endemic to the rotor
and the relevant feedback is not collocated with the AMB
connectivity, then the output sensitivity may not assess its
effect.

Index Terms— ISO standard, AMB, stability margin, ro-
bustness.

I. I NTRODUCTION

Arguably, stability is the most important requirement
for a large class of rotor-AMB systems such as turbo-
machines. While other performance requirements such as
the unbalance response may also be important, magnetic
bearings feature large clearance and effective open loop
control techniques to cope with them. Stability is a pri-
mary robustness requirement. Therefore, the evaluation of
stability margin is an essential element for the application
of magnetic bearings.

In 1996, Osami Matsushita organized an ISO committee
to establish acceptance and operating standards for com-
mercial rotating machines with AMBs [1]. This proposed
ISO standard aims to improve the commercial prospect for
the technology by facilitating customer specification. One
aspect of the standard is assessment of the AMB system
stability margin using the peak sensitivity function. For
instance, the peak sensitivity function should be limited
below 3.0 or 9.5 dB for newly commissioned machines.

This stability margin using sensitivity peak has many ad-
vantages. First, the stability margin assessment is based on
direct experimental data. The measured sensitivity function
does provide realistic stability information of the AMB
system under the measurement conditions. Second, the
proposed sensitivity function measurement guarantees the
classical gain margin and phase margin even for MIMO
systems.

In spite of these advantages of using the directly
measured sensitivity function as a AMB system stability
margin, the application of the ISO standard to evaluate
the stability margin against destablizing mechanisms has
significant limitations. This note is intended to clarify
the stability margin concepts in rotor-AMB systems, and
investigate the potential limitations and consequences of
using the ISO stability margin standard. One goal of this
study is to avoid overconfidence in this measure which
might lead to abandonment of the methodology altogether.
Instead, we hope to show directions in which the standard
might be extended in the future as familiarity with the tools
and underlying concepts becomes broader.

II. AMB S YSTEM STABILITY MARGIN

The stability margin, by definition, is a measure of the
amount of system deviation from some nominal, stable
configuration that can be tolerated before the system begins
to go unstable. Classical stability margins such as gain and
phase margins specify a stability safety factor describing
tolerable SISO feedback loop variation. The gain margin
is the smallest real gain variation that makes the system
unstable while the phase margin is the smallest amount
of phase variation that produces unstability. The peak
sensitivity function measures the smallest complex gain
variation leading to instability, thereby covering both gain
and phase margins simultaneously.

A. Destablizing Mechanisms

To obtain a truly robust system, the system designer
must focus on those mechanisms most likely to produce
deviation in system dynamic behavior. The destabilizing
mechanisms in rotor-AMB systems in general may include:
(1) cross coupled stiffness; (2) AMB gain and phase; (3)
parameter and dynamic uncertainties in the system (4) other
destablizing sources such as the transient or steady state
perturbation and disturbance as in impact or blade loss
cases. Note that, for other destabilizing sources such as the
disturbance by impact, blade loss, the nonlinear domain of



attraction is a good stability margin criterion. In this note,
we only focus on the discussion of linear system stability
margin.

For traditional rotating machinery supported on mechan-
ical bearings, generation of the tangential force by the cross
coupled stiffness is often the major cause of lateral insta-
bility. The cross coupled stiffness represents a large class
of destabilizing mechanisms including the cross coupling
generated by seals, hydrodynamic bearings, turbine and
pump impellers as well as the rotor internal damping. These
mechanisms produce instabililty by coupling drive torque
into lateral motion: they pump energy from spin into whirl.
A stability margin corresponding to the cross coupled
stiffness threshold level is often adopted in turbomachinery
applications. The API 617 standard specifies an analysis to
include the dominant destabilizing cross coupled stiffness.

Without the external cross coupled stiffness, the rotor
system with fluid film bearings or ball bearings is passive.
In contrast, magnetic bearing systems are not passive,
and instability occurs in different patterns. Apart from the
destabilizing mechanisms in the form of cross coupled
stiffness, the AMB itself can act as a destabilizing source.
Consequently, the stability of AMB system is not only
related to the cross coupled stiffness but also depends
on other parameters in the plant, operating conditions
and bearing stiffness. Obviously, the API standard which
targets mechanical bearings cannot adequately address the
instability problems in AMB machines.

B. Sensitivity Function

Fig. 1. AMB system block diagram.

The output sensitivity function and complementary sen-
sitivity functions used in the ISO standard are defined as the
transfer function matrix fromr to e andr andy as shown in
Fig. 1. Similarly, the input sensitivity and complementary
sensitivity are transfer function matrix fromd to v and d
to u respectively.

So(s)
4
= (I + G(s)C(s))−1, (1)

To(s)
4
= G(s)C(s)(I + G(s)C(s))−1,

Si(s)
4
= (I + C(s)G(s))−1,

Ti(s)
4
= C(s)G(s)(I + C(s)G(s))−1,

whereG represents the open loop plant transfer function
andC is the controller transfer function. For multivariable

systems the output sensitivity is, in general, not equal to
the input sensitivity.

For the SISO case, either sensitivity function (they
are equal in the SISO case) represents the inverse of
the distance fromG(jω)C(jω) to the critical point of
(−1, 0). Therefore, the minimal distance which is the peak
sensitivity function can be applied as a stability margin
measure. In fact, the classical gain marginGM and the
phase marginPM in each feedback loop of multivariable
systems are bounded by theH∞ norm of the sensitivity
function.

For MIMO systems in general theH∞ norm of the
weighted output sensitivity function ensures the robustness
to the inverse output multiplicative uncertainty, i.e.,(I +
W2∆W1)−1G, whereW1,W2 ∈ RH∞ and ∆ ∈ RH∞
with ‖ ∆ ‖∞< 1. Similarly, the robustness to the in-
verse input multiplicative uncertaintyG(I+W2∆W1)−1 is
guaranteed by the corresponding input sensitivity function
Si. Since the difference between the maximum singular
values ofS and T is at most one, the output sensitivity
function also ensures the output multiplicative uncertainty
(I + W2∆W1)G but not the input uncertainty.

C. Multivariable Nature

Although under certain circumstances the cross talk
between the bearings can be eliminated or reduced by
the center of mass (tilt–and–translate) or other coordi-
nate transformation, rotor-AMB systems in general are
inherently multivariable. Obvious coupling mechanisms
leading to this multivariable nature include modal coupling
between the bearings, plant cross coupled stiffness and
gyroscopic effects, and the effect of foundation dynamics.
But more importantly, the structure of plant uncertainies
may require a MIMO representation and add system level
cross coupling beyond what is mechanically obvious. Even
an apparently SISO system like the thrust axis in an
AMB system becomes MIMO when structured internal
uncertainties are modeled.

When the cross coupling cannot be neglected, using the
output sensitivity peak as a stability margin for multi-
variable system can be a problem. Unlike SISO systems
where uncertainties are completely specified by the loop
gain or equivalently the sensitivity function bound, some
uncertainties in MIMO systems cannot be characterized by
the loop gain without introducing substantial conservatism.
In addition, uncertainty occurs in the input may not be
revealed by the output sensitivity function. Consequently,
the sensitivity function is only a necessary condition for
stability but not sufficient to guarantee the stability margin
to specific uncertainties in general rotor-AMB systems.

D. MIMO Stability Marginµ

For the multivariable systems, it is well known that the
classical loop-at-a-time analysis1 may not be sufficient to

1Loop-at-a-timemeans that the sensitivity of the closed loop system
to individual uncertainties is examined one at a time, holding all other
uncertainties to zero. The measure adopted in the ISO standard: maximum
diagonal element of the MIMO sensitivity function is a loop-at-a-time
measure.



characterize the stability under the simultaneous perturba-
tion within different loops [10]. The structured singular
valueµ is the stability margin for multivariable systems.

E. Uncertainty Assumption

Uncertainty may arise from a variety of sources. The
most obvious is model error, but perhaps more impor-
tant are actual plant perturbations due to the changes in
operating condition, parameter varying dynamics, process
dynamics, aging, etc. Accordingly, the stability margin
should be assessed relative to deviations which may not
be captured in testing under specific operating conditions.

III. POTENTIAL PROBLEMS AND L IMITATIONS

If a system has a very high sensitivity function peak,
then it is certain to have robustness problems and is
likely to become unstable when operating conditions or
equipment condition changes slightly. However, a system
with relatively low sensitivity function peaks may also have
serious robustness problems and this is the central issue we
explore below.

This in general may occur in rotor-AMB systems includ-
ing but not limited to the following cases.

• Plant uncertainty mechanisms couple to the nominal
plant at different locations than AMB input and output
locations. An example is a seal. Here, the uncertainty
mechanism is deviation of the seal cross–coupled
stiffness from nominal value and this mechanism is
coupled to the rotor at a point other than where the
AMB acts or senses.

• While the sensitivity function is measured at the
output, the uncertainty occurs at the bearing location.

• There are parametric uncertainties, such as elastic
modulus.

In these cases, the sensitivity function peak is not a reliable
stability margin measurement. In other words, even with a
low peak sensitivity function, the stability margin to the
uncertainty above can be very small. This is illustrated
through the following cases.

A. Cross Coupled Stiffness

Rotor lateral instability due to cross–coupled stiffness
is one of the most prevalent problems in industry, and in-
stability problems are extensively investigated in traditional
rotordynamic applications [5]. However, the instability pat-
tern for AMB supported rotors can be different.

Instability Patterns:To illustrate the cross coupled stiff-
ness destabilizing mechanism, consider a modal second
order system with cross coupled stiffness:

[
m 0
0 m

] [
q̈x

q̈y

]
+

[
cx g
−g cy

] [
q̇x

q̇y

]

+
[

kx −κ
κ ky

] [
qx

qy

]
=

[
fx

fy

]
, (2)

whereκ represents the modal equivalent magnitude of the
cross coupled stiffness, andm,c,k and g are the modal
mass, damping, stiffness and gyroscopic terms respectively.

Without loss of generality we can assume thatm = 1.
Also, we assume that the gyroscopic effects are weak and
can be neglected, andc and k are positive. Ruth-Hurwitz
stability criterion yields the threshold value ofκ.

κ2 ≤
[
(cxky + cykx)(cx + cy) + (kx − ky)2

]
cxcy

(cx + cy)2
. (3)

The result reveals a well known fact that support stiffness
orthotropy (kx 6= ky) can increase the stability threshold
for cross coupled stiffness [4].

Equation (3) is nonlinear in the stiffness and damping
parameters but can be simplified by assuming symmetry:
kx = ky = k, cx = cy = c. This yields the modal threshold
value ofκ = c

√
k = 2ζω2

n, whereωn =
√

k/m, andζ =
c
√

m/4k. Thus, the stability margin toκ is linearly related
to the damping ratio and square of the natural frequencies.

Since the modal damping ratioζ is closely related to
the threshold cross coupled stiffness, it may be used as an
approximate measure of the corresponding stability margin
in some cases. For instance, the API 617 standard specifies
a log decrement greater than 0.1 as the final stability
acceptance criteria [2].

To better understand the stability margin problem, we
first explore instability patterns with the cross coupled
stiffness. For rotors supported on fluid film bearings or
rolling element bearings with squeeze-film dampers, the
instability pattern is relatively straightforward. With the
exception of tilting pad bearings, the stiffness and damping
of mechanical bearings are usually adequately modeled as
frequency independent for the first few modes below a
certain frequency. Assume that the modal damping mainly
comes from the bearings, and assume that the modal equiv-
alent cross coupled stiffness is roughly the same for certain
low frequency modes and high frequency modes. It is clear
that the lowest mode is almost always destabilized first. In
addition, the cross coupled stiffness is generally related to
the speed, and most stability problems are subsynchronous
in nature.

In contrast, the AMB parameters especially the damping
can be different for each mode. Consequently, the insta-
bility patterns are much more complex. The instability
can occur in different modes either subsynchronously or
supersynchronously. The relatively low stiffness of AMB
systems means that the first two modes in AMB machines
are almost always rigid body cylindrical and conical mo-
tions. In addition, the rotor rigid body modes are typically
well separated from the bending modes in frequency. As a
result, the rigid body modes benefit from the low support
stiffness and high effective damping while the high fre-
quency bending modes are provided only limited damping
by the AMB. The active damping on bending modes is
restricted in part by the power bandwidth (slew rate limits.)
It is further constrained by component dynamics as well as
the control strategy.

The result is that the bending modes may tolerate lessκ
than do the rigid modes, and thus can be destabilzed first.
Which mode is the limiting mode (first destabilized byκ),



affects the implication of using the ISO sensitivity peak as
a stability margin to cross coupled stiffness.

Rigid Body Mode:We first consider that a rigid body
mode is destabilized by the cross coupled stiffness. To
simplify the analysis, we assume the rotor is rigid. The two
rigid body cylindrical and conical modes can be decoupled
by the center of mass transformation. The resulting open
loop transfer functionG(s) = Ki/(ms2 − Kx), where
Ki and Kx are the actuator gain and open loop stiffness
of AMBs. Since most AMB controllers in the rigid bode
frequency range are essentially PD controllers, we adopt
an ideal PD controller, i.e.,C(s) = kds + kp. Note that
in practice ideal lead compensator cannot be implemented,
and PD controllers are also equipped with roll off filters.
There are always phase lags introduced by the filters,
amplifiers, sensors and time delays. Next we show that even
with the ideal PD controller, the stability margin defined
by the sensitivity peak and the stability margin to the cross
coupled stiffness is not equivalent.

With the ideal PD controller, the closed-loop system is
also a second order systemms2+Kikds+Kikp−Kx = 0.
The damping and natural frequency can be defined as

ωn =

√
Kikp −Kx

m
, ζ =

Kikd

2
√

(Kikp −Kx)m
. (4)

To simplify the notation, replaceKikp with KP andKikd

with KD. The resulting output sensitivity function is

S(s) =
ms2 −Kx

ms2 + KDs + KP −Kx
. (5)

For the underdamped case,ζ ≤ 1 ⇔ K2
D ≤ 4(KP −Kx),

the peak sensitivity of the functionMs is

2
KD

√
m2K2

P
−mKxK2

D

4m(KP−Kx)−K2
D

if 2mK2
P−2mKxKP−KxK2

D

2mKP−K2
D

> 0

max
{

Kx

KP−Kx
, 1

}
Otherwise,ω = 0 or ω = ∞

(6)
The corresponding threshold value of cross coupled stiff-
ness isκ = KD

√
(KP −Kx)/m. Comparing the peak

sensitivity Ms and the thresholdκ, notice that a small
sensitivity function peak does not necessarily translate to
large threshold value of cross coupled stiffness. The reason
is that κ depends on both the stiffnessKP − Kx and
damping KD while the sensitivity peakMs is mainly
determined by the effective damping. For instance, the
minimal peak sensitivity is 1. This can be achieved by
selecting KD = 2mKP . In other words, to reach the
minimal sensitivity peak, it is not necessary to use high
stiffness. However, in order to tolerate a largeκ, it is
necessary to use high stiffness.

Rotor Bending Mode:If the flexible modes are desta-
bilized first, whether the sensitivity peak represents the
stability margin to the cross coupled stiffness depends on
the flexible mode stabilization strategies.

Unlike the unstable rigid body modes on AMB support
which must be stabilized by active stiffness and damping,
the flexible mode stabilization strategies can be different.

Although flexible modes are often lightly damped, some
small structural damping guarantees that these modes are
stable without controller intervention. With a stable mode,
either phase stabilization or gain stabilization can be ap-
plied. To phase stabilize a mode, phase lead is applied
at the mode crossover region by phase shifting or phase
bump. This results in active damping being applied to
the mode. Alternatively, the gain stabilizing applies notch
filters or roll off filters to make the open loop gainL =
GK small, and thus guarantees stability regardless of the
phase variation. However, the gain stabilization approach
typically does not result in active damping of the mode.

Both gain and phase stabilization can result in low peak
sensitivity, but the implication to the stability margin to
the cross coupled stiffness is completely different. With
phase stabilization adding active damping into the modes,
robustness to cross coupled stiffness can be enhanced. In
contrast, gain stabilization provides almost no damping
improvement and therefore less stability margin to cross
coupled stiffness. If the controller gain at the mode is zero,
or if the mode is uncontrollable or unobservable, then the
sensitivity function is 1.0 near this mode and the mode will
never be destabilized by the AMB. However, the amount of
cross coupled stiffness the mode can cope with depends on
the structural damping, the modal frequency, and the mode
shape at the cross coupled stiffness location. Therefore, the
sensitivity function in this case yields no direct information
about the stability margin to the cross coupled stiffness.

A Case Study:This is illustrated by the test rig control
design and testing [6]. Anµ controller was designed assum-
ing no cross coupled stiffness. The measured diagonal sen-
sitivity function peaks were all below 2.5. Fig. 2 compares
the model prediction and the output sensitivity function
measurement in terms of singular values. According to
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Fig. 2. Maximum singular value plot of S withµ controller.

the ISO stability margin criterion, this machine can be
classified in Zone A/B for unrestricted long term operation.

However, the closed loop system is very sensitive to
cross–coupled stiffness. A small cross coupled stiffness
introduced at the middle disk and the closed-loop system
became unstable. The instability was associated with the
first free–free bending mode. This is mainly because the



rigid body modes were well damped while the damping at
the rotor bending mode was quite small. The first rigid bode
mode was at 27 Hz with a damping ratio of 0.8. According
to (3), the resulting cross coupled stiffness threshold value
is 46,000. In contrast, the rotor bending mode occurs at
153 Hz with a structural damping of 1.7%. If there is no
external active damping added, a cross coupled stiffness
exceeding 31,390 destabilizes the rotor bending mode.
Clearly, the required destablizing cross coupled stiffness to
the rotor bending mode is lower than that of the rigid rotor
mode. Interestingly, depending on the location of the cross
coupled stiffness, other modes such as the substructure
modes can be destabilized first. The sensitivity function
provides little information on how much cross coupled
stiffness each mode can cope with or which mode can be
destablized first.

B. Modal Frequency Variation

Flexible rotors and substructures exhibit multiple lightly
damped modes and multiple gain crossover frequencies.
Thus, robustness to modal parameter variation at the gain
crossover frequencies is an important requirement. This is
not only because modeling and testing errors are inevitable,
but also because the rotor or substructure modal parameters
can vary with the operating conditions. Change in modal
frequencies can arise for many reasons including (1) the
gyroscopic effect splits the modes; (2) shrink fits on the
rotor vary with speed and temperature; (3) substructure
modes are sensitive to connecting part contact stiffness.
Consequently, stability robustness to modal parameter un-
certainty must be evaluated. Compared to modal damping,
modal frequency uncertainty is more critical to the closed-
loop stability [7]. Unfortunately, the sensitivity function is
not a good measure of the stability margin to the modal
frequency variation. The problem is that modal frequency
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uncertainty is not readily covered by multiplicative uncer-
tainty which is directly related to the sensitivity function.
Intuitively, for a lightly damped mode, a slight shifting in
modal frequency can cause large multiplicative errors in the
gain. Consider the test rig rotor for example: a3% modal
frequency perturbation can result in800% uncertainty in
terms of the multiplicative uncertainty model as shown in
Fig. 3.

As a result, the design based on nominal modal fre-
quency can have a low sensitivity peak but be very sensitive
to perturbation of the modal frequency. This is illustrated
by an test rig instability incidence. SeveralH∞ and µ
controllers were implemented and tested a few years ago
with acceptable levels of sensitivity peak specified in ISO
standard. After a few years of operation, aµ-controller
became unstable during testing. This controller was de-
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signed based on 2% modal frequency uncertainty for the
substructure mode. A careful examination of substructure
compliance measurements taken in 2000 and again in 2004
revealed substantial shifting of the substructure modes.
Fig. 4 shows that modes at 113 Hz and 134 Hz shift about
2%. This mode variation was in part due to reassembly of
the rig.

Figure 5 shows the sensitivity function of the closed loop
system computed using the original substructure model
(red curve) and with the re–identified model (blue curve).
Although the shift in modal frequency is small, the change
in peak sensitivity is dramatic (the modified model is not
stable). However, both the sensitivity prediction and mea-
surement with the original structure modes do not reveal
this vulnerability. Experience suggests that, for systems
with flexible rotors and substructures, the controller should
tolerate as much as±5% modal uncertainty for modes
within the bandwidth of the controller. Unfortunately, this
margin is not guaranteed by the sensitivity measurement
specified in the ISO standard.

C. Gyroscopic Coupling

Gyrosocpic effects couple the rotor motion in two radial
directions and make the system multivariable in nature.
The gyroscopic moment itself is conservative and is not
a destabilizing factor. However, the gyroscopic system
presents large condition numbers. Certain control solutions
which produce decent sensitivity functions can be dubious.

To illustrate this problem, a decoupled rigid rotor model
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The condition number is the ratio of largest to smallest
singular value of the2× 2 system, i.e.,

γ(G(jω)) =
ω2 + ΩIγω + k̄θ

ω2 − ΩIγω + k̄θ
. (8)

The condition number approaches infinity at the pole
frequency.

ω1,2 =
ΩIγ ∓

√
(ΩIγ)2 − 4k̄θ

2
. (9)

Inverse-based control design such as internal mode con-
trol (IMC) can be a very useful approach to many control
problems. Zames [9] showed that approximate invertibility
of the plant is a necessary and sufficient condition for
achieving good sensitivity reduction. AnH∞ optimization
with the objective to minimize the sensitivity function re-
sults in inverse-based control. With inverse-based controller
C = l(s)G−1(s), it is clear that closed-loop system yields
good nominal sensitivity.

However, when an inverse-based controller is used, the
resulting system is very sensitive to input uncertainty
when the plant has a large condition number [8]. Since
gyroscopic systems can have very high condition numbers,
they can have very high input sensitivity over a range of
operating speeds. This problem would not be revealed by
an output sensitivity measurement - even if taken in the
problematic speed range.

It is interesting to observe that an inverse-based con-
troller generates cross coupled damping. Physically, cross
coupled damping force is perpendicular to the whirling
orbit. Thus no effective modal damping or energy dissipa-
tion is introduced through cross coupled damping feedback.
Cross coupled damping has been applied to gyroscopic
systems [3] and will likely yield low output sensitivity,
but this approach can be very sensitive to input uncertainty.

This further illustrates that output sensitivity alone does not
necessarily reveal strong potential robustness problems.

IV. CONCLUSIONS

For rotating machinery applications such as turboma-
chinery, instability remains one of the most prevalent prob-
lems due to the presence of various uncertain destabilizing
mechanisms in rotors and in the process dynamics. Use
of magnetic bearings in these machines may further exac-
erbate the problem. This is not only because the magnetic
bearings are open loop unstable, but also because uncertain-
ties are introduced which makes the system multivariable.

Due to the multivariable nature, the sensitivity function
peak specified in the current ISO draft standard may not be
a reliable measure of the stability margin to the destablizing
mechanisms other than the magnetic bearing itself. In
particular, we point out that a good sensitivity function
does not guarantee robustness to cross coupled stiffness
or modal frequency uncertainty. With strong gyroscopic
coupling, certain controller structures such as the inverse-
based controller are fragile to the skewed uncertainty.
For multivariable systems the structured singular valueµ
provides a reliable stability margin.

Finally, we emphasize that we are not suggesting that
ISO sensitivity measurement should not be considered as
a stability margin evaluation criteria for AMB systems due
to the aforementioned shortcomings. On the contrary, the
sensitivity function is a good screening tool and should
always be applied first for the evaluation of the stability
margin against the magnetic bearing loop gain variations.
However, we are also noting that, as with any application
standard, one should be aware of the limit of the standard
and should not attempt to extrapolate the information
beyond those assumptions.
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