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Abstract— Stability is a primary robustness requirement.  This stability margin using sensitivity peak has many ad-
The stability margin is therefore a measure of the amount  vantages. First, the stability margin assessment is based on
of system deviation from some nominal, stable configuration  girect experimental data. The measured sensitivity function
that can be tolerated before the system becomes unstable. d id listic stability inf fi f the AMB
The notion of ‘system deviation’ can imply many forms and 0€s proviae realistic stability In orma_l(_)n 0 €
mechanisms: engineers must, perforce, focus on those most System under the measurement conditions. Second, the
likely to afflict a given system in order to obtain a meaningful ~ proposed sensitivity function measurement guarantees the
assessment of relative stability. _ classical gain margin and phase margin even for MIMO

This note discusses the stability margins of rotor-AMB sys- systems.

tems. Particular attention is focused on the output sensitivity, . . .
whose peak amplitude is a common measure of sensitivity In spite of these advantages of using the directly

and is adopted by the new ISO standards for AMB systems. Measured sensitivity function as a AMB system stability
One objective is to illustrate that many common sources of margin, the application of the ISO standard to evaluate

instability in rotordynamic systems may be completely missed  the stability margin against destablizing mechanisms has
by this measure and, further, that controller design targeting significant _limitations. This note is intended to clarify

reduction in output sensitivity may, in fact, lead to very . . .
poor robustness to these mechanisms. Several examples are the stability margin concepts in rotor-AMB systems, and

developed to show that, while limiting the sensitivity peak is investigate the potential limitations and consequences of
a necessary condition for rotor-AMB system stability, it may ~ using the ISO stability margin standard. One goal of this
not be sufficient to ensure commercially viable robustness study is to avoid overconfidence in this measure which
to common destabilizing mechanisms such as aerodynamic mjight lead to abandonment of the methodology altogether.
CrOTSs'COUP"”g or hysteretic damping in the rotor. Instead, we hope to show directions in which the standard

e primary observation is that, if the AMB is the ) . - .
destabilizing mechanism, then the output sensitivity will reveal  Might be extended in the future as familiarity with the tools

it, but if the destabilizing mechanism is endemic to the rotor ~and underlying concepts becomes broader.
and the relevant feedback is not collocated with the AMB
connectivity, then the output sensitivity may not assess its Il. AMB SYSTEM STABILITY MARGIN
effect. The stability margin, by definition, is a measure of the
Index Terms—ISO standard, AMB, stability margin, ro- amount of system deviation from some nominal, stable
bustness. configuration that can be tolerated before the system begins
to go unstable. Classical stability margins such as gain and
phase margins specify a stability safety factor describing
tolerable SISO feedback loop variation. The gain margin
Arguably, stability is the most important requirementis the smallest real gain variation that makes the system
for a large class of rotor-AMB systems such as turbo-unstable while the phase margin is the smallest amount
machines. While other performance requirements such asf phase variation that produces unstability. The peak
the unbalance response may also be important, magnetensitivity function measures the smallest complex gain
bearings feature large clearance and effective open looyariation leading to instability, thereby covering both gain
control techniques to cope with them. Stability is a pri-and phase margins simultaneously.
mary robustness requirement. Therefore, the evaluation of o .
stability margin is an essential element for the applicatiorf- Destablizing Mechanisms
of magnetic bearings. To obtain a truly robust system, the system designer
In 1996, Osami Matsushita organized an ISO committeenust focus on those mechanisms most likely to produce
to establish acceptance and operating standards for cordeviation in system dynamic behavior. The destabilizing
mercial rotating machines with AMBs [1]. This proposed mechanisms in rotor-AMB systems in general may include:
ISO standard aims to improve the commercial prospect fofl) cross coupled stiffness; (2) AMB gain and phase; (3)
the technology by facilitating customer specification. Oneparameter and dynamic uncertainties in the system (4) other
aspect of the standard is assessment of the AMB systedestablizing sources such as the transient or steady state
stability margin using the peak sensitivity function. For perturbation and disturbance as in impact or blade loss
instance, the peak sensitivity function should be limitedcases. Note that, for other destabilizing sources such as the
below 3.0 or 9.5 dB for newly commissioned machines.disturbance by impact, blade loss, the nonlinear domain of

I. INTRODUCTION



attraction is a good stability margin criterion. In this note,systems the output sensitivity is, in general, not equal to
we only focus on the discussion of linear system stabilitythe input sensitivity.
margin. For the SISO case, either sensitivity function (they
For traditional rotating machinery supported on mechanare equal in the SISO case) represents the inverse of
ical bearings, generation of the tangential force by the crosthe distance fromG(jw)C(jw) to the critical point of
coupled stiffness is often the major cause of lateral insta¢—1,0). Therefore, the minimal distance which is the peak
bility. The cross coupled stiffness represents a large classensitivity function can be applied as a stability margin
of destabilizing mechanisms including the cross couplingneasure. In fact, the classical gain margitd/ and the
generated by seals, hydrodynamic bearings, turbine amghase marginPM in each feedback loop of multivariable
pump impellers as well as the rotor internal damping. Thessystems are bounded by tl¢,, norm of the sensitivity
mechanisms produce instabililty by coupling drive torquefunction.
into lateral motion: they pump energy from spin into whirl.  For MIMO systems in general th&{,, norm of the
A stability margin corresponding to the cross coupledweighted output sensitivity function ensures the robustness
stiffness threshold level is often adopted in turbomachineryo the inverse output multiplicative uncertainty, i.él,+
applications. The API 617 standard specifies an analysis td>AW;)~tG, where Wy, Wy € RHo, and A € RH oo
include the dominant destabilizing cross coupled stiffnesswith || A ||c< 1. Similarly, the robustness to the in-
Without the external cross coupled stiffness, the rotowerse input multiplicative uncertainty (7 +W,AW;)~tis
system with fluid film bearings or ball bearings is passiveguaranteed by the corresponding input sensitivity function
In contrast, magnetic bearing systems are not passive,;. Since the difference between the maximum singular
and instability occurs in different patterns. Apart from thevalues of S and 7" is at most one, the output sensitivity
destabilizing mechanisms in the form of cross coupledunction also ensures the output multiplicative uncertainty
stiffness, the AMB itself can act as a destabilizing source(I + Wy AW7)G but not the input uncertainty.
Consequently, the stability of AMB system is not only C. Multivariable Nature
related to the cross coupled stiffness but also depends
on other parameters in the plant, operating condition
and bearing stiffness. Obviously, the API standard whic
targets mechanical bearings cannot adequately address
instability problems in AMB machines.

Although under certain circumstances the cross talk
etween the bearings can be eliminated or reduced by
IW@ center of masstilf—and—translat¢ or other coordi-
nate transformation, rotor-AMB systems in general are
inherently multivariable. Obvious coupling mechanisms
B. Sensitivity Function leading to this multivariable nature include modal coupling
between the bearings, plant cross coupled stiffness and
gyroscopic effects, and the effect of foundation dynamics.

A B But more importantly, the structure of plant uncertainies
d A::;Iii{er4> Kl ROTOR |+ Sensor v may require a MIMO representation and add system level
cross coupling beyond what is mechanically obvious. Even

AMB an apparently SISO system like the thrust axis in an

,,,,,,,,,,,,,, AMB system becomes MIMO when structured internal
Substructure uncertainties are modeled.
When the cross coupling cannot be neglected, using the
DA Controller (— AD e—{ A r output sensitivity peak as a stability margin for multi-
variable system can be a problem. Unlike SISO systems
where uncertainties are completely specified by the loop
Fig. 1. AMB system block diagram. gain or equivalently the sensitivity function bound, some
o ] uncertainties in MIMO systems cannot be characterized by
_The output sensitivity function and complementary senyhe |oop gain without introducing substantial conservatism.
sitivity functions used in the ISO standard are defined as thg, addition, uncertainty occurs in the input may not be

transfer function matrix from to ¢ andr andy as shownin - eyealed by the output sensitivity function. Consequently,
Fig. 1. Similarly, the input sensitivity and complementary \he sensitivity function is only a necessary condition for

sensitivity are transfer function matrix fromto v andd  gapility but not sufficient to guarantee the stability margin
to u respectively. to specific uncertainties in general rotor-AMB systems.

So(s) 2 (I+G(s)0(s))7Y, (1)  D. MIMO Stability Margin
T,(s) 2 G(s)C(s)(I + G(s)C(s)) ™1, For the multivariable systems, it is well known that the
A = classical loop-at-a-time analyisnay not be sufficient to
Si(s) = (I+C(s)G(s),
A _ 1Loop-at-a-timemeans that the sensitivity of the closed loop system
Ti(s) = C(s)G(s)(I +C(s)G(s)) . to individual uncertainties is examined one at a time, holding all other

h I ts th | lant t fer f ti uncertainties to zero. The measure adopted in the 1ISO standard: maximum
where i represents the open loop plant transter tunc IorHiagonal element of the MIMO sensitivity function is a loop-at-a-time

and C' is the controller transfer function. For multivariable measure.



characterize the stability under the simultaneous perturba- Without loss of generality we can assume that= 1.
tion within different loops [10]. The structured singular Also, we assume that the gyroscopic effects are weak and
value p is the stability margin for multivariable systems. can be neglected, andand & are positive. Ruth-Hurwitz

, ) stability criterion yields the threshold value ef
E. Uncertainty Assumption

2
Uncertainty may arise from a variety of sources. The .2 [(caky + k) (e + ¢y) + (ke — y) ]chy' ©)
most obvious is model error, but perhaps more impor- - (cz +¢y)?

tant are actual plant perturbations due to the changes "he result reveals a well known fact that support stiffness

operating condition, parameter varying dynamics, proces&rthotropy t. + k,) can increase the stability threshold
dynamics, aging, etc. Accordingly, the stability marginfor cross coupled gtiﬁness [4]
should be assessed relative to deviations which may not Equation (3) is nonlinear ir; the stiffness and damping

be captured in testing under specific operating Cond't'onsparameters but can be simplified by assuming symmetry:
[Il. POTENTIAL PROBLEMS AND LIMITATIONS kII: kyf: k, Cff: Cy = Th;]S yields thf/f]l%da' th;eShOM

. . value ofx = cvVk = 2¢w;, wherew,, = m, and( =

If a system has a very high sensitivity function peak,c\/m. Thus, the stability margin te is linearly related

then it is certain to have robustness _problems_ and T the damping ratio and square of the natural frequencies.
likely to become unstable when operating conditions or ~ _. . o
Since the modal damping rati¢ is closely related to

equipment condition changes slightly. However, a system . ;
quipmer nang gntly YS'Mhe threshold cross coupled stiffness, it may be used as an
with relatively low sensitivity function peaks may also have ; . . .

. L . approximate measure of the corresponding stability margin
serious robustness problems and this is the central issue wi . =
in'some cases. For instance, the API 617 standard specifies
explo_re_ below. . . a log decrement greater than 0.1 as the final stability

This in general may occur in rotor-AMB systems includ-

ing but not limited to the following cases acceptance criteria [2].
g _ ) 9 : . To better understand the stability margin problem, we
« Plant uncertainty mechanisms couple to the nomin

’ X ' airst explore instability patterns with the cross coupled
plant at different locations than AMB input and output itness. For rotors supported on fluid film bearings or
locations. An example is a seal. Here, the uncertainty|ing element bearings with squeeze-film dampers, the
mechanism is deviation of the seal cross—coupleggapility pattern is relatively straightforward. With the
stiffness from nominal value and this mechanism isgycention of tilting pad bearings, the stiffness and damping
coupled to the rotor at a point other than where theyt mechanical bearings are usually adequately modeled as
AM_B acts or SENSes. . frequency independent for the first few modes below a

« While the sensitivity function is measured at the qgortain frequency. Assume that the modal damping mainly
output, the uncertainty occurs at the bearing location.,mes from the bearings, and assume that the modal equiv-
« There are parametric uncertainties, such as elastigient cross coupled stiffness is roughly the same for certain
modulus. low frequency modes and high frequency modes. It is clear

In these cases, the sensitivity function peak is not a reliablghat the lowest mode is almost always destabilized first. In

stability margin measurement. In other words, even with addition, the cross coupled stiffness is generally related to

low peak sensitivity function, the stability margin to the the speed, and most stability problems are subsynchronous
uncertainty above can be very small. This is illustratedn nature.

through the following cases. In contrast, the AMB parameters especially the damping

can be different for each mode. Consequently, the insta-

bility patterns are much more complex. The instability
Rotor lateral instability due to cross—coupled stiffnesscan occur in different modes either subsynchronously or
is one of the most prevalent problems in industry, and insypersynchronously. The relatively low stiffness of AMB
stability problems are extensively investigated in traditionalsystems means that the first two modes in AMB machines
rotordynamic applications [5]. However, the instability pat- are almost always rigid body cylindrical and conical mo-
tern for AMB supported rotors can be different. tions. In addition, the rotor rigid body modes are typically
|nStab|l|ty Patterns: To illustrate the cross COUp|Ed stiff- well Separated from the bending modes in frequency_ As a
ness destabilizing mechanism, consider a modal secondsylt, the rigid body modes benefit from the low support

A. Cross Coupled Stiffness

order system with cross coupled stiffness: stiffness and high effective damping while the high fre-
m 0 i ¢ g i quency bending mode's are proyided only Iimited damping
0 m i, + g & dy by the AMB. The active damping on bending modes is

R f restricted in part by the power bandwidth (slew rate limits.)
+ [ * } { e ] = { . ] , (2) Itis further constrained by component dynamics as well as
ko Ry 1y fy the control strategy.
wherek represents the modal equivalent magnitude of the The result is that the bending modes may tolerate Aess
cross coupled stiffness, and,c,k and g are the modal than do the rigid modes, and thus can be destabilzed first.
mass, damping, stiffness and gyroscopic terms respectivelWhich mode is the limiting mode (first destabilized ky,



affects the implication of using the ISO sensitivity peak asAlthough flexible modes are often lightly damped, some
a stability margin to cross coupled stiffness. small structural damping guarantees that these modes are
Rigid Body Mode:We first consider that a rigid body stable without controller intervention. With a stable mode,
mode is destabilized by the cross coupled stiffness. Teither phase stabilization or gain stabilization can be ap-
simplify the analysis, we assume the rotor is rigid. The twoplied. To phase stabilize a mode, phase lead is applied
rigid body cylindrical and conical modes can be decoupledit the mode crossover region by phase shifting or phase
by the center of mass transformation. The resulting opebump. This results in active damping being applied to
loop transfer functionG(s) = K;/(ms?> — K,), where the mode. Alternatively, the gain stabilizing applies notch
K; and K, are the actuator gain and open loop stiffnesdilters or roll off filters to make the open loop gaih =
of AMBs. Since most AMB controllers in the rigid bode GK small, and thus guarantees stability regardless of the
frequency range are essentially PD controllers, we adopgthase variation. However, the gain stabilization approach
an ideal PD controller, i.e(C(s) = kqs + k,. Note that typically does not result in active damping of the mode.
in practice ideal lead compensator cannot be implemented, Both gain and phase stabilization can result in low peak
and PD controllers are also equipped with roll off filters. sensitivity, but the implication to the stability margin to
There are always phase lags introduced by the filterdhe cross coupled stiffness is completely different. With
amplifiers, sensors and time delays. Next we show that evgphase stabilization adding active damping into the modes,
with the ideal PD controller, the stability margin defined robustness to cross coupled stiffness can be enhanced. In
by the sensitivity peak and the stability margin to the crossontrast, gain stabilization provides almost no damping
coupled stiffness is not equivalent. improvement and therefore less stability margin to cross
With the ideal PD controller, the closed-loop system iscoupled stiffness. If the controller gain at the mode is zero,
also a second order systems? + K;kqs+ K;k,— K, = 0.  or if the mode is uncontrollable or unobservable, then the
The damping and natural frequency can be defined as sensitivity function is 1.0 near this mode and the mode will
never be destabilized by the AMB. However, the amount of
o, = [ Kikp — Kw7 = Kikq . (4 cross coupled stiffness the mode can cope with depends on
m 2y/(Kik, — K;)m the structural damping, the modal frequency, and the mode
shape at the cross coupled stiffness location. Therefore, the
sensitivity function in this case yields no direct information
about the stability margin to the cross coupled stiffness.
ms? — K, A Case StudyThis is illustrated by the test rig control
ms2+ Kps+ Kp — Ky ®) design and testing [6]. Ap controller was designed assum-
) ing no cross coupled stiffness. The measured diagonal sen-
For the underdamped cases 1 < K, < 4(Kp — Kqu). itivity function peaks were all below 2.5. Fig. 2 compares
the peak sensitivity of the functioft/; is the model prediction and the output sensitivity function
measurement in terms of singular values. According to

To simplify the notation, replac&’;k, with Kp and K;kq
with K p. The resulting output sensitivity function is

S(s) =

2 m2K2-—mK, K2 if 2mK2% —2mK, Kp—K,K% <0
Kp \| 4m(Kp—K.)- K2 2mKp—K2
K 3 Maximum singular value plot of sensitivity function
max {K}%K7 1} Otherwisew =0 or w = oo 3 ‘ ‘

(6)
The corresponding threshold value of cross coupled stiff-
ness isk = Kp+/(Kp — K,)/m. Comparing the peak
sensitivity M, and the threshold:, notice that a small
sensitivity function peak does not necessarily translate to
large threshold value of cross coupled stiffness. The reason
is that x depends on both the stiffnedsp, — K, and
damping Kp while the sensitivity peakM, is mainly
determined by the effective damping. For instance, the
minimal peak sensitivity is 1. This can be achieved by

Magnitude

selecting Kp = 2mKp. In other words, to reach the 10° 10! esency (0 10° 10°
minimal sensitivity peak, it is not necessary to use high
stiffness. However, in order to tolerate a large it is Fig. 2. Maximum singular value plot of S with controller.

necessary to use high stiffness.

Rotor Bending Mode!lf the flexible modes are desta- the ISO stability margin criterion, this machine can be
bilized first, whether the sensitivity peak represents thelassified in Zone A/B for unrestricted long term operation.
stability margin to the cross coupled stiffness depends on However, the closed loop system is very sensitive to
the flexible mode stabilization strategies. cross—coupled stiffness. A small cross coupled stiffness

Unlike the unstable rigid body modes on AMB supportintroduced at the middle disk and the closed-loop system
which must be stabilized by active stiffness and dampingbecame unstable. The instability was associated with the
the flexible mode stabilization strategies can be differentfirst free—free bending mode. This is mainly because the



rigid body modes were well damped while the damping at As a result, the design based on nominal modal fre-
the rotor bending mode was quite small. The first rigid bodeguency can have a low sensitivity peak but be very sensitive
mode was at 27 Hz with a damping ratio of 0.8. Accordingto perturbation of the modal frequency. This is illustrated
to (3), the resulting cross coupled stiffness threshold valuby an test rig instability incidence. Severadl,, and p

is 46,000. In contrast, the rotor bending mode occurs atontrollers were implemented and tested a few years ago
153 Hz with a structural damping of 1.7%. If there is nowith acceptable levels of sensitivity peak specified in ISO
external active damping added, a cross coupled stiffnesstandard. After a few years of operation,uacontroller
exceeding 31,390 destabilizes the rotor bending modéecame unstable during testing. This controller was de-
Clearly, the required destablizing cross coupled stiffness to
the rotor bending mode is lower than that of the rigid rotor
mode. Interestingly, depending on the location of the cross , , —0- 2000
coupled stiffness, other modes such as the substructure : :
modes can be destabilized first. The sensitivity function
provides little information on how much cross coupled
stiffness each mode can cope with or which mode can be
destablized first.

Compliance measurement

10

Magnitude

B. Modal Frequency Variation

Flexible rotors and substructures exhibit multiple lightly
damped modes and multiple gain crossover frequencies.
Thus, robustness to modal parameter variation at the gain
crossover frequencies is an important requirement. This is W’ o o . . e o
not only because modeling and testing errors are inevitable, Frequency (Hz)
but also because the rotor or substructure modal parameters
can vary with the operating conditions. Change in modal
frequencies can arise for many reasons including (1) the
gyroscopic effect splits the modes; (2) shrink fits on thesigned based on 2% modal frequency uncertainty for the
rotor vary with speed and temperature; (3) substructurgubstructure mode. A careful examination of substructure
modes are sensitive to connecting part contact stiffnesgompliance measurements taken in 2000 and again in 2004
Consequently, stability robustness to modal parameter unevealed substantial shifting of the substructure modes.
certainty must be evaluated. Compared to modal dampingsig. 4 shows that modes at 113 Hz and 134 Hz shift about
modal frequency uncertainty is more critical to the closed2%. This mode variation was in part due to reassembly of
loop stability [7]. Unfortunately, the sensitivity function is the rig.

not a good measure of the stability margin to the modal Figyre 5 shows the sensitivity function of the closed loop
frequency variation. The problem is that modal frequencysystem computed using the original substructure model

(red curve) and with the re—identified model (blue curve).
01 — Although the shift in modal frequency is small, the change
Gg in peak sensitivity is dramatic (the modified model is not
stable). However, both the sensitivity prediction and mea-
surement with the original structure modes do not reveal
this vulnerability. Experience suggests that, for systems
with flexible rotors and substructures, the controller should
tolerate as much as5% modal uncertainty for modes
within the bandwidth of the controller. Unfortunately, this
margin is not guaranteed by the sensitivity measurement
specified in the 1SO standard.

Fig. 4. Compliance measurement comparison.

Magnitude (abs)
C e

Fig. 3. Modal frequency perturbation.

C. Gyroscopic Coupling

uncertainty is not readily covered by multiplicative uncer-

tainty which is directly related to the sensitivity function. ~ Gyrosocpic effects couple the rotor motion in two radial

Intuitively, for a lightly damped mode, a slight shifting in directions and make the system multivariable in nature.
modal frequency can cause large multiplicative errors in thd he gyroscopic moment itself is conservative and is not
gain. Consider the test rig rotor for example3% modal @ destabilizing factor. However, the gyroscopic system
frequency perturbation can result 0% uncertainty in ~ Presents large condition numbers. Certain control solutions
terms of the multiplicative uncertainty model as shown inwhich produce decent sensitivity functions can be dubious.
Fig. 3. To illustrate this problem, a decoupled rigid rotor model



10 Maximum singuar value plot of se“s‘f”“,yf“”””” This further illustrates that output sensitivity alone does not
=2 necessarily reveal strong potential robustness problems.

IV. CONCLUSIONS
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! For rotating machinery applications such as turboma-
ol { ] chinery, instability remains one of the most prevalent prob-
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!
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Magnitude
n

lems due to the presence of various uncertain destabilizing
mechanisms in rotors and in the process dynamics. Use
F Aty | 1 of magnetic bearings in these machines may further exac-
2,’_—/\/‘% erbate the problem. This is not only because the magnetic
1t bearings are open loop unstable, but also because uncertain-
0 ‘ ‘ ties are introduced which makes the system multivariable.
Frequency (H2) ’ Due to the multivariable nature, the sensitivity function
peak specified in the current ISO draft standard may not be
Fig. 5. Sensitivity function with original and modified structure model. a reliable measure of the stability margin to the destablizing

mechanisms other than the magnetic bearing itself. In
particular, we point out that a good sensitivity function

is examined. does not guarantee robustness to cross coupled stiffness
I, 0 0, Q 0 I, 0, or modal frequency uncertainty. With strong gyroscopic
0 I éy + -I, 0 éy coupling, certain controller structures such as the inverse-
based controller are fragile to the skewed uncertainty.
—ky 0 0, te N .
g ko . | = | ¢ (7)  For multivariable systems the structured singular value
Yy Yy

. _ : provides a reliable stability margin.
The condition number is the ratio of Iargest to smallest Fina”y, we emphasize that we are not Suggesting that

singular value of the& x 2 system, i.e., ISO sensitivity measurement should not be considered as
. w? + QLw + kg a stability margin_evaluation crite_ria for AMB systems due
Y(G(jw)) = D OLwt (8)  to the aforementioned shortcomings. On the contrary, the
vy

N o sensitivity function is a good screening tool and should
The condition number approaches infinity at the poley\ays be applied first for the evaluation of the stability
frequency. margin against the magnetic bearing loop gain variations.
QL 7 \/(QL)? — 4k However, we are also noting that, as with any application
" " 9_ 9) standard, one should be aware of the limit of the standard

2 and should not attempt to extrapolate the information

Inverse-based control design such as internal mode comeyond those assumptions.
trol (IMC) can be a very useful approach to many control
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