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Abstract— Active magnetic bearings (AMBs) require a
feedback controller for stable operation. This paper describes
a procedure which allows for fully automated initial levitation
with no knowledge about the AMB system. Combined with
some adaptive or self-tuning techniques, bearings could be
setup automatically with minimal human interaction, without
calibration or tuning.

Based on the ideal and linearized model of a single mass one
degree of freedom levitated body, the criterion for a stable
suspension is reviewed. A step-by-step description outlines
how the needed parameters are found which lead to a
stabilizing controller. A more general, hybrid model including
sensor and amplifier dynamics as well as a discrete-time PID
controller is used to compare the regions of stabilizing control
parameters to the ideal case. The presentation of experimental
data and a discussion conclude this paper.

I. I NTRODUCTION

Active Magnetic Bearings (AMBs) are capable of adjust-
ing the force applied to the supported structure (typically a
rotor) within a limited amplitude and bandwidth. Equipped
with position sensors and a feedback controller, AMBs can
imitate the behavior of physical systems such as a spring-
damper suspension or more complex structures which are
able to suspend flexible rotors. Control theory provides
numerous tools to design such controllers with the desired
properties and performance. However, most of these tools
require a plant model and relatively precise knowledge
of the AMBs, sensors and the rotor. So called robust
controllers tolerate model inaccuracies but compromise
performance. Adaptive Control features adaptation to un-
known model parameters. However, typical AMB models
do not account for events such as the rotor hitting the
backup bearings. Therefore, a stable controller is required
as a starting point for adaptation. Ironically, the properties
of an AMB system can easily be found by experiment,
once a stabilizing controller is in place.

In this paper, we propose a method to automatically
establish initial levitation with only the knowledge of
the maximum bearing current and the sampling rate or
controller time interval. Sensor calibration and controller
tuning can be automatically performed on-site, without any
human interaction. This further helps establishing low-cost
bearing series.

For the so-calledAuto Levitator, parameters such as the
bearing’s negative stiffnesskx, force-per-current coefficient
ki, sensor gain and offset as well as rotor geometry, mass
and moments of inertia are all unknown. Previously, Loesch

et al. [2] proposed a way to acquire rotor parameters and
a stabilizing controller by a simple experiment, which still
requires knowledge of some bearing parameters. Methods
for online tuning of a given, stabilizing controller to
meet the required performance have been presented in [3],
[4]. The entire start-up configuration and tuning could be
automated when combined with this new method.

Digital control circuits, necessary to stabilize a levi-
tated body, can in most cases easily accommodate some
additional functionalities. Therefore, no extra hardware
is required to implement theAuto Levitator. The block
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Fig. 1. Software block diagram

diagram in Fig. 1 shows how theAuto Levitatorinteracts
with a typical AMB controller. The first part of the added
code represents a finite state machine which performs the
desired experiments by injecting perturbation currents and
manipulating controller and filter parameters. The finite
state machine is updated at the controller sampling rate
and has to be scheduled for real-time execution. The
second part of the software extension, labelled Analyzer,
does not require real-time execution and is synchronized
with the real-time control by a hand-shaking protocol.
The analyzer performs time consuming signal processing
tasks on buffered experimental data as requested by the
finite state machine, for controller tuning. The following
paragraphs discuss the automatic experiments performed by
the finite state machine and the theoretical basis to establish
initial levitation.



II. PARAMETER SEARCH FORINITIAL LEVITATION

A stabilizing controller is needed to establish levitation.
Consider a single mass levitated body with one degree
of freedom such as a balanced beam or a thrust bear-
ing (see section IV). Let’s further assume that there are
two opposing electromagnets operating with the currents
ibias + ic and ibias − ic with ic being the control current.
(If the bias flux is provided by permanent magnets, then
ibias is zero, and the opposing coils can be connected in
series.) In this case, the commonly used linearized model
for active magnetic bearing systems [1] describes the plant
adequately and the dynamic equation can be written as

mẍ = icki + xkx + Fd (1)

with the massm, the displacementx and a disturbance
force Fd, e.g. resulting from the weight of the suspended
body. (For the balanced beam test rig, replace the mass
by the beam’s moment of inertia, and the displacement
x by the tilting angle; the equation, however, doesn’t
change for small angles.) The coefficientki is the force-
per-currentconstant andkx is the force-per-displacement
constant. Applying a state feedback law as shown in Fig 2,
it becomes intuitively clear how the open-loop unstable
AMB can be stabilized. (Note that this state feedback
corresponds to a PD controller (11) withKP = −k1/kss

and KD = −k2fsp/kss; sensor gainkss [V/m], sampling
frequencyfsp [Hz].) With Fd = 0 andk2 = 0, the forces
acting on the floating mass are the destabilizing positive
feedbackxkx and the proportional control actionxk1ki.
By selectingk1 such that the inequality

kx + k1ki < 0 (2)

is satisfied, arestoring force proportional to the displace-
ment x will be applied to the floating body. By choosing
any negative number fork2, damping (a force opposing
the motion) is added to the closed loop system. Thus the
floating body will come to a rest at the originx = 0, ẋ = 0
or, if Fd 6= 0 at x = −Fd/(k1ki + kx), ẋ = 0. Damping
and stiffness of the suspension can be chosen as desired.
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Fig. 2. AMB block diagram with state feedback

Alternatively, the closed-loop system from Fig 2 can also
be written in state space form:

[
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ẍ

]
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ẋ

]
+
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0
1
m

]
Fd. (3)

The controller parametersk1 and k2 appear in the
second line of the system matrix, presented in control

canonical form. Thus one can choose the coefficients of
the characteristic polynomial of the system matrix which in
turn control the location of the eigenvalues in the complex
plain or the poles in the transfer functionFd to x [6].

For initial levitation, a proportional feedback just large
enough to overcome the negative stiffness and some damp-
ing is desired. The automatically performed experiments
acquire the needed information about the AMB system and
include the following steps:

1) The control currentic is driven from zero toimax,
which causes the body (if it is not already from the
beginning) to lean all the way to the one side where
the maximum positive current increases the flux
density. The displacement is measured and stored as
x̂1.

2) Now, the most negative current is applied and the
body is jerked to the other side and pulled against
the backup bearing. The displacement is measured
again and kept aŝx2. A negative differencêx1− x̂2,
indicates that the force axis and the measured
position axis point in opposite directions, in other
words, a positive current causes a force pulling in
negative direction. The position signal is to be
inverted, as well aŝx1 and x̂2. Next, the geometric
center between the bearing poles is calculated:
x̂0 = x̂1 + x̂2−x̂1

2 . Note that all thehat-parameters
are measured and quantified in the control device’s
specific scale, not in meters or Newtons.

3) The current is slowly driven from−imax to imax

while monitoring the position signal. As soon as it
crosses the center̂x0, the lift-off currentic2 is
recorded. Note that the actual lift-off occurs earlier,
however, due to the flat slope of the current signal,
the error remains very small.

4) The previous step is reversed to measure the lift-off
currentic1 from the other backup bearing.
Furthermore, a velocity measurement
v̂[k] = x̂[k]− x̂[k − 1] is derived from the position
signal, and the maximum stored asv̂max.

5) Finally, the closed-loop system is tested with the
controller parametersKP , KD andKI , which are
based on the findings from the steps above. The
position signal is monitored and the controller is
deactivated immediately if stability is not yet
achieved.

At the time when the body lifts off and witḧx still being
zero, the body is no longer leaning on the backup
bearings and the following force balance is given at the
startup from both backup rails:

ic1ki + (x̂1 − x̂0)kx + Fd = 0, (4)

ic2ki + (x̂2 − x̂0)kx + Fd = 0. (5)

Solving for Fd reveals

Fd = − ic1 + ic2
2

ki (6)

which is substituted into (4) and (5) which leads to the



following:

kx

ki
=

ic2 − ic1
2(x̂1 − x̂0)

=
ic1 − ic2

2(x̂2 − x̂0)
. (7)

Rearranging (2) shows that a measurement for the
minimum proportional gainKP to overcome the negative
stiffness is given by the right hand side of (7). A small
safety factor is included to get a stable closed-loop
system with low stiffness:

KP := 1.2
kx

ki
. (8)

The velocity feedback gainKD is chosen such that
maximum control action is opposing the motion when the
body moves at maximum recorded speed:

KD :=
imax

v̂max
. (9)

The parameterKI is appointed such that the integration
is very slow and does not significantly influence the
dynamic behavior of the suspension, for example

KI :=
KP

10fsp
. (10)

Nevertheless, the integral action is able to compensate for
the constant disturbance forceFd and removes any
steady-state position error. The suspended body could be
left significantly off-centered if applying a soft or
low-stiffness PD controller only. A discrete-time version
of such a PID controller is given below,

ic[k] := KP e[k]+ KD(e[k]−e[k − 1])+ KI int[k] (11)

int[k] := int[k − 1] + e[k] (12)

with discrete time stepk, the position error
e[k] = x̂0 − x̂[k] and a smallKI . In order to run this
procedure, the allowable current rangeimin − imax has to
be known to prevent damage to the AMB, and the
controller’s sampling ratefsp is used to setup the current
ramps as well as for the calculation ofKI , both of which
are not very critical.

III. PRACTICAL CONSIDERATIONS

The validity of the 2nd order linearized model is limited
since it ignores the dynamics of the power amplifier,
position sensor and time-delay of the digital controller. A
more complete model as shown in Fig. 3 is used to
determine stabilizingKP andKD through simulations.
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Fig. 3. A more detailed model, including power amplifier, sensor and
controller

The AMB linear model is based on the thrust bearing of
the compressor test rig withkx = 6800kN/m,

ki = 1150N/A and the rotor massm = 37kg. Both the
power amplifier as well as the position sensor are
modelled as 2nd order systems with undamped natural
frequencies at 500Hz and 10kHz and damping ratios of
0.6 and 1.5. The digital PID controller operates at a 5kHz
sampling rate and has a 40% cycle-time delay (80µs)
from reading the sensor signal until the current command
is updated. The parameterKI is chosen very small such
that the dynamics are basically not affected. Since there
is no sensor to measure the velocity of the rotor, an
approximation is made by multiplying the difference
between the currently and previously measured position
with the sampling frequency.
The effects of the low-pass filters (power amplifier and
sensor model) and the delay result in phase lag which has
to be compensated for by higher damping (phase lead).
Simulation results (Figs. 4 and 5) underline the necessity
of damping for the system to be operational. In fact, the
higher the proportional gain is chosen, the more damping
is required to keep the closed-loop system stable.
Furthermore, a decrease in amplifier bandwidth has the
same effect as an increase in controller delay (or
computation time), both are compensated for by an
increase in damping. Fast integral action (Fig. 6)requires
high damping if theKP is low at the same time. A
typical selection forKP is 2kx/ki which reverses the
bearing’s natural negative stiffness.
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Fig. 4. Damping requirement for different amplifier bandwidths

The signal of the position sensor contains noise, limiting
the proportional feedback gain and constraining even
worse the feedback of the approximated velocity signal.
Therefore, the initial guess forKP is set just slightly
above the stability thresholdkx/ki (8). Still, there is no
guarantee that settingKD according to the measured
maximum velocity and maximum control currentic
results in a stable close-loop system. As an alternative,
one could measure the noise level in the position signal
while the body is stationary, pressed against the backup
bearings and a large current is running through the coils.
Now KD can be set to the highest practical level, in
particular, to a level such that the amplified noise does
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Fig. 5. Damping requirement for different controller delays
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not saturate the power amplifier.
Another possible obstacle for theAuto Levitatormight be
the fact that the AMB system is identified while the
floating body or rotor is leaning on the backup bearings
and is not centered. Due to the nonlinearity of the
actuator,kx/ki could get over estimated. In theory, this
would not cause a problem and simply result in a rather
stiff initial controller, however, the damping requirements
will rise unnecessarily. Furthermore, position sensors
could become nonlinear or might saturate when the
displacement is very large. Consequences could result in
levitation at an off-centered position (asymmetric
saturation), and again in an over estimate ofkx/ki

(saturation).

IV. A CTIVE MAGNETIC BEARING TEST RIGS

Two AMB test rigs were used to evaluate theAuto
Levitator. The first one (shown in Fig 7) consists of a
beam free to rotate on a pivot and two electromagnets
serving as actuators, located at each end of the beam.
These two coils are connected in series and apply a
torque to the beam by adjusting the bias flux provided by
permanent magnets. This setup serves as test platform for
different types of control algorithms and has been used

for self-sensing.

Position Sensor

CoilCoil

Pivot

Fig. 7. Balanced Beam AMB test rig

The second machine (see Fig 8) is a compressor test rig
which has been build to measure fluid forces acting on
the impeller and to actively control surge [5]. The
impeller sits on a shaft which is kept in place by two
radial AMBs and one AMB in thrust direction with load
capacities of 1400N and 6600N, respevtively.

Motor

Control Rack
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Fig. 8. High speed centrifugal compressor AMB test rig

V. EXPERIMENTAL RESULTS AND CONCLUSION

The Auto Levitator was implemented in C on a standard
PC with Real-time Linux OS, and the presented data was
obtained from the balanced beam test rig. The entire
identification procedure as described before is shown in
Fig 9. The upper plot displays the current command
signal determined by theAuto Levitatorstate machine
and after 22 seconds by the PID controller. The measured
position signal is shown in the bottom plot. The first
rising and falling current ramps measure the position
sensor range, during the second set of ramps (between
seconds 12-22) the bearing characteristics are detected
and finally, the controller with the identified parameters is
activated. The beam evidently reaches the desired position
x̂0 at about 4V, and the command signal exhibits the
noise amplification. At this stage, the bearing system is
ready for tuning of the control parameters until given
performance requirements are met or some optimal
performace is reached.
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Fig. 9. Successful initial levitation of the balanced beam

The automatic levitation procedure has successfully been
tested on a single degree of freedom systems, and led to
stable levitation right away. A simplified AMB model
was used to characterize a stabilizing state feedback or
PD controller, and simulations were used to establish
regions for desired control parameters.
An extension to full rotor suspension by consecutively
levitating one axis after another seems feasible. Some
difficulties could arise from bearings using permanent
magnet bias flux (which can not be turned off) that might
interfere with the automatic experiment of a neighboring
bearing.
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