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Abstract  –   In this study, a class of smooth 
controllers is proposed for the stabilization of a 3-pole 
active magnetic bearing (AMB) system. The 3-pole 
AMB system is strongly nonlinear and non-affine. 
Conventional controllers are nonsmooth and 
complicated, which is difficult for implementation and 
further study. The proposed smooth controllers are 
designed utilizing a linear transformation on the system 
inputs (coil currents). As a result, simple smooth 
controllers, such as quadratic state feedback controller, 
can be obtained. The domain of attraction of the origin 
under the smooth controller is estimated. The proposed 
smooth controller is verified through both numerical 
and experimental results. 
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bearing, non-affine, quadratic state feedback.

I.  INTRODUCTION 

Stabilizing controller design is an important task for an 
active magnetic bearing (AMB) system since it is 
inherently unstable. For the popular 8-pole AMB system, 
the dynamics can be well approximated by a linear model 
if large bias currents are taken [1]. As a result, many linear 
control methods can be employed to design a suitable 
stabilizing controller, e.g., PID [2], Q-parameterization 
theory [3], µ-synthesis [4], and H∞ control [5]. However, 
large bias currents imply large power loss. To reduce the 
heat dissipation, zero or low bias currents are preferred. 
For such systems, the dynamics are strongly nonlinear. In 
particular, the system input currents appear in a quadratic 
way. Thus, controller design is a nontrivial task. In 
general, nonsmooth (or discontinuous) nonlinear 
controllers are required for stabilization [6-8].  

Recently, the 3-pole AMB was proposed in view of the 
expensive cost and large energy loss of the conventional 8-
pole system [9]. It has been shown that the 3-pole system 
can effectively reduce the overall cost and save much 
energy compared to the conventional 8-pole AMB. Similar 
to the 8-pole AMB system, however, the 3-pole AMB 
system also suffers difficulties from the controller design. 
The situation for the 3-pole AMB is even worse. The 
magnetic fluxes in the 3-pole AMB are strongly coupled. 
Hence, the 3-pole system is a nonaffine and strongly 
nonlinear system. Although this nonaffine nonlinear 
system has been shown to be feedback linearizable, the 

resulting stabilizing controllers are nonsmooth and 
complicated [10, 11]. 

Nonsmooth and complicated controller can cause 
problems in practical applications. It can induce high 
frequency disturbance and cause problems in 
implementation. Moreover, the closed loop system with 
such controller is complicated, which is extremely difficult 
for further study. For example, observer design for such a 
complicated system is almost impossible. The objective of 
this study is to propose a class of smooth controllers for 
the 3-pole AMB system to overcome the problems caused 
by the nonsmooth and complicated controllers. The smooth 
controllers are designed using the special structure of the 
3-pole system. More specifically, there exists a linear 
transformation on the input currents that greatly simplifies 
the system model [9-10]. Smooth controllers for the new 
inputs can be easily constructed.  

This paper is organized as follows. After the 
introduction, a non-dimensional model for the 3-pole AMB 
system is described in Section 2. The proposed smooth 
controllers are presented in Section 3. In Section 4, the 
domain of attraction of the origin under the smooth 
controller is discussed. The smooth controllers are verified 
through numerical simulations and experimental results in 
Section 5. Finally, conclusions are drawn in Section 6. 

II.  A NONDIMENSIONAL MODEL 

Fig.1 is the 3-pole AMB system considered in this 
study. It is a 2-DOF system with a disk-like rigid rotor. 
The axial motion is constrained with thrust bearings. The 
AMB is Y-shaped with differential windings on the upper 
two poles to yield the optimal design from the viewpoint of 
energy and cost [9]. It is assumed that the magnetic field is 
linear, flux leakage and fringing effects are negligible, and 
gravitational field g is in the negative y direction. The 
system dynamics can be obtained with these assumptions, 
as [10-11] 
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where [ ] [ ]Trrrr
T yyxxxxxxx &&== 4321  is the 

state vector containing the rotor displacements  and 
their velocities. The coefficient  is defined by 
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where µ  is the magnetic permeability of the air, A  is pole 
face area, and  is the number of coil turns for each pole 
and  is the rotor mass. The functions  and 

N
m 1Φ 2Φ  are 

quantities related to magnetic flux. They depend on the 
rotor displacements and coil currents in the following way 
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where  is the nominal air gap and  is 
always positive in the operation range because that the 
rotor displacement is always smaller than the nominal air 
gap, i.e. . The determinant of the matrix in (2) is 

0l )(4 222
0 rr yxlL +−=

2
0

22 )( lyx rr ≤+

L3  which is always nonzero. Thus the coil currents 
can be expressed in terms of  as 21, ii 21, ΦΦ
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Equations (2) and (3) will play an important role in the 
following controller design. 

Next, a nondimensional model will be derived. It can 
help us choose proper feedback gains and reduce the 
possible numerical errors. To this aim a set of physical 
quantities should be taken as the bases for 
nondimensionalization. The nominal air gap  is a natural 
base for the nondimensional rotor displacement. The bias 
current (used to support the rotor weight at the steady 
state) defined by 
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is the base for the nondimensional coil current. 
The desired steady state is 
  [ ] [ TT Iix 00 , 0000 == ∗∗ ]
and the linearized system matrix with respect to the steady 
state is  

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000
1000

000
0010

0

0

l
g

l
g

A  

Thus, the open-loop system possesses poles of 0lg± . 

The time constant gl0  is used here as a base for the 
nondimensional time. The maximum rotor displacement is 

 and hence the nondimensional velocity is based on 0l

000 glgll = . Therefore, the nondimensional 
quantities are defined by 
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With this set of nondimensional quantities, the state 
equation (1) can be expressed as 
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The relation of 1Φ  and 2Φ  to 1i  and 2i  now becomes 
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and 
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where )(4 2
3

2
1 xxL +−= . 

III.  DESIGN OF SMOOTH CONTROLLERS 

Based on the nondimensional model, a class of smooth 
stabilization controllers for the 3-pole AMB system is 
proposed in this section. For conciseness, we shall abuse 
the notation by dropping the over bar on the 
nondimensional quantities in this and next sections. 

First, it is observed that  and  are equivalent to 
the control inputs  and  by equation (5) and (6). In 
other words, one can first design a smooth feedback law 
for 

1Φ 2Φ

1i 2i

1Φ  and 2Φ . The actual control law for  and  can 
be obtained easily by (6). Let 

1i 2i

 )(ˆ  and  )(ˆ 2211 xx ψψ =Φ=Φ  (7) 
be the feedback law. From the state equation (4), it is easy 
to see that an equilibrium must satisfy 

 
2
3)(ˆ  and  ,0)(ˆ  ,0 2142 ±==== xxxx ψψ  (8) 

Recall that the desired steady state is the origin. Hence, 
that feedback law in (7) must satisfy 

 
2
3)0(ˆ  and  ,0)0(ˆ 21 ±== ψψ  (9) 

Here, the positive and negative ones in (9) are equivalent 
since they only represent opposite coil current directions at 
the steady state. We shall take the positive one without loss 
of generality. That is, the feedback law will take the form 

 )(
2
3  and  )( 2211 xx ψψ +=Φ=Φ  (10) 

where 0)0()0( 21 ==ψψ . For the controller to be smooth, 
we have to require that )(1 xψ  and )(2 xψ  be smooth. 

With equation (10), the closed-loop system becomes 
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It is clear that the quadratic terms in 1ψ  and 2ψ  do not 
contribute to the local stability since they contain only 
higher order terms. Let 

 [ ] T

x
kkkkk

x 114131211
0

1   ∆=
∂
∂

=

ψ  (12) 

 [ ] T

x
kkkkk

x 224232221
0

2   ∆=
∂
∂

=

ψ  (13) 

Then the local stability of the origin is determined by the 
eigenvalues of 
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The feedback laws )(1 xψ  and )(2 xψ  have to be chosen 
such that the matrix A in (14) is Hurwitz. 

Next, we can simplify the control law (10) by taking 
)(1 xψ  as a function of  and  only, and 1x 2x )(2 xψ  as that 

of  and  only. In doing so, we must have 3x 4x
  022211413 ==== kkkk
in equations (12)-(14). In other words, the linearized 
dynamics are decoupled in the x  and  motions. 
Physically, the 

y
x  dynamics are controlled by )(1 xψ , 

whereas the y  dynamics are determined by )(2 xψ . 
Therefore, the desired equilibrium is exponentially stable if 
and only if k , , , and  are all negative. 11 12k 23k 24k

One can further simplify the control law by taking 
)(xiψ  as a linear function of the states, i.e. 

 2121111 )( xkxkx +=ψ  (15) 
 4243232 )( xkxkx +=ψ  (16) 
Then, the closed-loop system (11) becomes a quadratic 
nonlinear system 
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where the local dynamics are dominated by the decoupled 
linear parts. When the feedback law is taken as the linear 
form (15) and (16), the control law for the actual input i  
can be obtained by (6) and is given by 
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which are polynomial functions of degree 2 in the states. 
One interesting fact for this smooth controller is noted. 
Recall that the original state equation (4) is strongly 
nonlinear in the states and inputs. However, if the 
quadratic state feedback laws (18) and (19) are applied, the 
closed-loop system (17) is also quadratic. In the rest of this 
study, we will focus on this quadratic state feedback 
system. 

IV.  DOMAIN OF ATTRACTION 

The local stability of the desired equilibrium point, i.e., 
the origin, has been imposed in designing the smooth 
controller, as demonstrated in the previous section. Here, 
the domain of attraction (DOA) of the origin will be 
discussed. One special feature of the AMB system is that 
no impacts between the rotor and stator are allowed during 
the operation. Thus, one can define the operation domain 
to be 
 { }1 and 1 2
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Therefore, it is hoped that the DOA of the origin is large 
enough so that it can cover the operation domain. 
However, the DOA will be constrained by other 
equilibrium points. Let us begin by investigating the 
existence of other equilibrium points. 

From the closed-loop system (17), it is easy to see that 
there exists another equilibrium point given by  
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Then, one can get 
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Since all ’s are all negative (so that the matrix ijk A  in 
(14) is Hurwitz), the eigenvalues of *A  must be positive 
or negative real numbers. We conclude that  must be a 
saddle point. The DOA of the origin must be constrained 
by . The parameter  should be taken as 

*x

*x 23k

 03 23 <<− k  
so that  is located out of the operation domain. To 
enlarge the DOA, the parameter  should be taken as 
close to zero as possible. 

*x
23k

Next, we shall estimate the DOA utilizing the quadratic 
structure of the system. The closed-loop system (17) can 
be rewritten as 
 )(xgAxx +=&  
where  
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Now, consider the Lyapunov function  
  PxxxV T=)(

where  is the positive definite matrix satisfying 
the Lyapunov’s equation 

0>= TPP

 IPAPA T −=+  
Then, one can obtain 
 )(2)(2)( 2 xgPxxxPgxxxxV TT +−≤+−=&  (22) 

where •  denotes the Euclidean 2-norm. The norm )(xg  
can be obtained as 
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Hence, equation (22) becomes 
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Therefore, the DOA can be estimated by [12] 
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where )(min Pλ  denotes the minimum eigenvalue of the 
matrix P . Obviously, this estimated DOA depends on the 
control gains ’s, which can be maximized using 
optimization technique. We will not pursue it here, but 
leave it as a future work. 
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V. NUMERICAL AND EXPERIMENTAL RESULTS 

 Both numerical and experimental studies will be 
performed to verify the analysis.  

The system parameters are: m=0.634 kg, g=9.81 m/s2, l0 

=1×10–3 m, µ =4π×10–7 H/m, A=4×10–4 m2, N=300. The 
control gains are chosen to 
be: , and , 
corresponding to nondimensional control gains of 

, and 
. The initial condition is: 

300  ,350  ,300 231211 === kkk 35024 =k

4
2312

4
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071.024 =k

[ ]010500)0( 4 mx −×−=  

Note that there is a back-up bearing placed on half way 
between the stator and the rotor. In other words, the 
practical allowable operation range for the rotor is a circle 

with radius of , which is marked by dashed lines 
in the following figures. Hence, the initial condition 
represents the situation that the rotor is initially at rest on 
the back-up bearing. This is the case that coincides with 
the experiment presented below. The simulation results are 
shown in Figs. 2 to 3. As one can see clearly, the rotor can 
be brought to the origin with zero steady state error. 

m4105 −×

The experimental set-up is shown in Fig. 4. It is a single 
3-pole AMB with a disk-like rotor. The frame and base are 
made of aluminum alloy to shield the magnetic flux. To 
reduce the eddy current loss, both the stator and rotor are 
made of laminated sheets of silicon steels with thickness of 
20 mm. The outer diameter of the stator is 150 mm, and 
that of the rotor is 70 mm. Each side of the rotor shaft is 
constrained with a thrust bearing. The coil currents are 
provided by PWM power amplifiers (Advanced Motion 
Control model 25A20). The power amplifier can provide 
currents between ± 12.5 A with bandwidth of 2.5 KHz. 
The displacements of the rotor are measured by two eddy 
current sensors (Applied Electronics Corporation AEC 
7606-34), with resolution of 0.5µm and measurement 
range of 0 to 1.3 mm. The control algorithms are 
implemented on a dSpace’s DS1102 control card for the 
real time control with sampling time of  sec. The 
system parameters are the same as those used in 
simulations. The rotor is initially at rest on the back-up 
bearing and is to be levitated to the origin. 

410−

The experimental results are shown in Figs. 5 to 6. 
Indeed, the rotor can be levitated to a neighborhood of the 
origin. However, there exists steady state error, as 
indicated in Fig. 6. The existence of the steady state error 
could be due to uncertainties. There exist many uncertainty 
sources for an AMB system, such as magnetic flux 
leakage, magnetic hysteresis and saturation, and 
manufacturing and assembly errors, etc [13]. As suggested 
in [11], delicate calibration and robust controller are 
necessary for good performance. The present smooth 
controller is far from robust. The steady state error can be 
eliminated by including an integral control. Fig. 7 shows 
the experimental results with integral control, where the 
rms steady state error is mµ28.4 . 

VI. CONCLUSIONS 

A class of smooth controllers has been proposed for the 
stabilization of a 3-pole AMB system. The system is 
strongly nonlinear and non-affine. Conventional 
controllers are nonsmooth and complicated, which are 
difficult for practical implementation and further study. 
The proposed smooth controllers are designed utilizing a 
linear transformation on the system inputs (coil currents). 
Based on the new inputs, a class of smooth controllers can 
be designed easily. In particular, a quadratic state feedback 
controller has been proposed. With such a smooth 
controller, there exists another undesirable equilibrium 
point that can constrain the domain of attraction of the 
origin. The stability of the undesirable equilibrium and the 
domain of attraction of the origin have been discussed. It is 
found that the undesirable equilibrium is a saddle point. 



Moreover, the estimated domain of attraction of the origin 
depends on the control parameters. One can take proper 
feedback gains to enlarge the domain of attraction of the 
origin. 

3-poleAMB 

Backup bearing
Shaft

Sensor 

Base 

The analyses have been verified by numerical and 
experimental results. Perfect results have been obtained in 
simulations. In the experimental results, although the rotor 
can be levitated to a neighborhood of the origin, there 
exists steady state error, which could be due to the 
uncertainty. The steady state error can be eliminated using 
integral control. Both numerical and experimental results 
verify that the smooth controller is indeed feasible. 
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Fig. 1 The 3-pole AMB system 
 
 

 
Fig. 2 Numerical results: rotor trajectory 

 

 
Fig. 3 Numerical results: displacement responses 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4 The experimental set-up 
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Fig. 5 Experimental results: rotor trajectory 

 

 
Fig. 6 Experimental results: displacement responses 

 
 

 
Fig. 7 Experimental results with integral control: rotor 

trajectory 
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