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Abstract— A new type of active axial magnetic bearing is
considered which is capable of generating forces and torques.
A network approach is used for modeling of the position de-
pendent current-force/torque-relation. The bearing is used for
positioning with a flatness-based position controller. Results
from model validation and position control experiments are
presented.

I. I NTRODUCTION

Magnetically levitated shafts can be used for machine
tool spindles in order to produce circular and non-circular
holes with high precision. A typical set-up of such a
tooling spindle uses two electro-magnetic radial bearings,
one electro-magnetic axial bearing, and a motor which
generates the driving torque. A lower number of bearings
or a more compact design are possible using bearingless
motors. Instead, in this contribution we propose to use an
adapted axial bearing that generates both levitation forces
and torques. This forms an alternative for reducing the
construction by one radial bearing.

The known self-bearing disc motor construction (see for
instance [1]) has been modified. The resulting axial bearing
consists of two similar parts capable to generate torques
and axial forces. Each of the parts is made of a cylindrical
core with radial slots. One, thus, has a stator core with
salient trapezoidal poles that are equipped with the coils
(Fig. 1). As opposed to a disc motor design, here the
bearing disc does not carry permanent magnets.

The spatial distribution of the poles allows one to gen-

Fig. 1. Schematic drawing of one half of the axial bearing andthe
bearing disc (semi-transparent).
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Fig. 2. Electrical (light) and magnetical (dark) network ofone half of
the axial bearing with one possible Y-connection.

erate forces and torques acting on the disc. Roughly, the
forces are used for axial positioning while the torques are
used to replace, or to increase, forces that would else be
generated by a radial bearing.

With this new configuration the equations of the rigid-
body motion of the shaft are simplified, and lead to
decoupled equations for forces and torques. A flatness
based controller can be designed, extending work of [2],
[3].

II. M ODELING AND CONTROL

In this section the modeling of the axial bearing is
discussed. The calculation of the forces and torques is
based on a network approach. For a particular Y-connection
an approach is presented that allows us to obtain a relation
between forces/torques and currents depending on the
position. This model can be used to calculate the control
currents realizing forces and torques required by a position
controller. At the end of the section a short summary of
the flatness-based position controller used is given.

A. Axial bearing setup

We consider an axial bearing consisting of two six-
pole halves, where each pole is provided with a coil ofw
windings and a bearing disc (see Fig. 1). In order to obtain
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Fig. 3. Photograph of the laboratory spindle used for experiments.

the per pole magnetic flux in the air gap we consider a
magnetic network of the axial bearing half. If we assume
linear magnetic characteristics of the material and neglect
leakage fluxes we get a magnetic network as depicted in
Fig. 2 (dark circuit); concerning the use of network models
see also [5]. The magnetic resistances of the stator and the
disc are related to the geometric dimensions:

Rm =
ℓ

µA

Here ℓ is the extent of the magnetizable material in field
direction,A the relevant cross-sectional area perpendicular
to the field direction, andµ the permeability of the magneti-
zable material. For the network approach we introduce four
magnetic resistances: the magnetic resistanceRd of a disc
sector (angleπ/3), the magnetic resistanceRs of a sector
of the stator base (angleπ/3), the magnetic resistanceRp

of a pole, and the magnetic resistanceRℓ of the air gap
with length ℓgap between one pole and the disc. For the
sake of simplicity, we assume that the bearing disc and the
stator plane are parallel. Thus, the length of the air gap is
the same for all poles of one bearing half.

Since the coils need not be connected in a particular
way, we can analyze different configurations. A first useful
possibility is to connect two adjacent coils in series, thus,
obtaining three coil pairs per half. This configuration
requires a six channel power amplifier. An alternative is
to connect two opposite coil pairs in series and then
connect them in Y with the remaining coils, so that
i3 = −i1 − i2 (see the light circuit in Fig. 2). The main
difference between those two connections is the following.
A bearing half can generate torques about two axes with
the first connection and about one axis only with the second
connection, assuming that the bearing is properly aligned.
However, this is not a disadvantage of the Y-connection,
because a second half is always needed in oder to generate
positive and negative axial forces. Torques about two axes

can be generated if the two halves are mounted with a
π/2 turn w.r.t. one other. The main advantages of the Y-
connection are that DC-voltage link inverters can be used
and that simpler equations for the current-force/torque-
relations can be obtained.

B. Experimental set-up

The laboratory test-bench is shown in Fig. 3. The con-
ventional axial bearing and the rear radial bearing were
disconnected but not removed (see Fig. 3). Furthermore, a
rotor extension carries an axial bearing disc. The two axial
bearing halves are placed on the left and on the right of
the bearing disc. Indeed, this set-up does not benefit from
the possibility of reducing the set-up by one radial bearing.
Rather, it just allows us to show the feasibility of magnetic
levitation with the new axial bearing. In order to benefit
from reducing the set-up by one radial bearing a new rotor
with a shorter length can be used. This will reduce the total
length of the spindle and yield a more compact design.

C. Equations of the rigid body dynamics

As one radial bearing is removed, the equations of
the rigid-body model of the spindle used in [4] must be
adapted. Instead of having four radial forces (each radial
bearing with a force iny- and z-direction) and one axial
force, there are two radial forces, two torques (about they-
and z-axis), and one axial force. This leads to decoupled
equations for forces and torques, which can be written as
follows (gyroscopic forces neglected):

mẌ = Fx +mgx (1a)

mŸ = Fy +mgy (1b)

mZ̈ = Fz +mgz (1c)

J2ψ̈ = My − lfFz (1d)

J2θ̈ = Mz + lfFy (1e)

J1ϕ̈ = Dϕ (1f)



Using the inertial coordinate system given in Fig. 3, we
denote the Cartesian coordinates of the center of mass as
X,Y, Z and the Bryant angles asϕ, ψ, andθ. The param-
eterlf denotes the distance between the radial bearing and
the center of mass (see Fig. 3). Finally,Fy, Fz are the radial
forces,Fx is the axial force andMy,Mz are the torques
about they- and z-axis, respectively. The mass of the
rotor is denoted asm, the components of the gravitational
acceleration vector asgx, gy, gz, and the moments of inertia
of the symmetric rotor areJ1, J2, whereJ2 > J1. The
driving torque isDϕ.

At this point we can also define the length of the air gap
using the coordinates. For the left and the right side of the
bearing disc, we respectively get

ℓgap = ℓ0 ±X

with the nominal air gap lengthℓ0.

D. Modeling the current-force/torque-relation with a net-
work approach for one bearing half

The Y-connection shown in Fig. 2 cannot be simplified
to single horseshoe magnets in order to get a decoupled
model. This is due to the windings of the third phase,
which lead to non-negligible magnetic fluxes through ad-
jacent poles. In order to obtain equations for the current-
force/torque-relation, first the network in Fig. 2 is used
to describe the magnetic fluxes in the air gaps w.r.t. the
currents:

Φℓ =
w

N
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)

(2)

wherew denotes the windings of one coil and

N =
∏

ν∈{1,3,4}

(
Rs +Rd + ν(Rp +Rℓ)

)

R1 = 4(Rs +Rd)
2 + 12(Rp +Rℓ)

2

+ 17(Rp +Rℓ)(Rs +Rd)

R2 = (2Rℓ + 2Rp +Rd +Rs)(Rs +Rd)

R3 = (Rs + Rd + 3Rp + 3Rℓ)

× (3Rs + 3Rd + 4Rp + 4Rℓ)

With the six air gap flux components ofΦℓ in (2) one
can calculate the forces and torques, which depend on the
mounting angle. As mentioned above, the halves are rotated
by an angle of90◦ w.r.t. one another. Here the half left from
the bearing disc (in Fig. 3) is considered. The axial force
acts in negativex-direction and is modeled as

Fx,− = cF
[(
i21 + i22

) (
2R2

1 + 2R2
2 + 2R2

3

)

+i1i2
(
8R1R2 + 4R2

3

)] (3)

The torques are given by

My ≡ 0 (4)

Mz =
√

3rF cF
(
i21 − i22

) (
R2

1 −R2
2

)
(5)

with cF = w2/(2µ0ApN
2), whereAp is the cross-sectional

area of a pole andrF the radial distance between the
center of the disc and the point where the resulting force
is assumed to be applied. Our aim is to get the current-
force/torque-relation. However, it is difficult to get explicit
expressions fori1 and i2 from the equations above. One
approach is to use a coordinate transformation in order to
simplify the equations, as follows.

Looking at (3) and (5) one may observe that the equa-
tions for the forces and for the torques describe ellipses
and hyperbolas, respectively (see also Fig. 4). Rotating
the i1-i2-coordinate system aboutπ/4 and introducing the
transformed currents̃i1, ĩ2 the mixed term in the expression
for the forceFx,− in (3) vanishes:

Fx,− = 2cF
[
(R1 −R2)

2 ĩ21 + ((R1 +R2)
2 + 2R2

3)̃i
2
2

]

Moreover, the equation for the torqueMz in (5) simplifies
to

Mz = 2
√

3rF cF (R2
1 −R2

2 )̃i1ĩ2

If we keep in mind that electromagnets can generate
attracting forces (Fx,− ≥ 0) only, we can find up to four
solutions for ĩ1 and ĩ2. For Fx,− → ∞ the first pair of
solutions approaches thẽi1-axis:

ĩ1 =
ε

√
8
√

3c2F rF (R1 −R2)3(R1 +R2)

ĩ2 =

√
2(R1 −R2)√
3rF (R1 +R2)

Mz

ε

while the second pair of solutions approaches theĩ2-axis:

ĩ1 =

√
2((R1 +R2)

2 + 2R2
3)√

3rF (R2
1 −R2

2)

Mz

ε

ĩ2 =
ε

√
8
√

3c2F rF ((R1 +R2)2 + 2R2
3)(R

2
1 −R2

2)

Hereε is given by

ε = ±

√
√
√
√
Fx,− +

√

F 2
x,− −

4
(
(R1 +R2)

2 + 2R2
3

)
M2

z

3r2F (R1 +R2)2

×

√

2
√

3rF cF (R2
1 −R2

2)

The sign of ε determines the solution quadrant in the
transformed coordinate system. When a torque is generated
also an axial force is produced. Thus, we obtain

FM
x,− =

√
4
(
(R1 +R2)

2 + 2R2
3

)
M2

z

3r2F (R1 +R2)2

To get real solutions forε we have to satisfyFx,− ≥ FM
x,−.

Finally, the original current components result from the
inverse coordinate transformation as

(
i1
i2

)

=
1
√

2

(
ĩ1 + ĩ2

−ĩ1 + ĩ2

)



E. Model equations of a complete axial bearing

So-far we discussed the left axial bearing half only. For
the complete model we also need the equations for the
right half. The fact that the left and the right half are
geometrically and electrically similar, but mounted under
a different angle permits us to re-use the equations given
above with the following adaptations. First we have to use
ℓ0 −X instead ofℓ0 +X for the air gap lengthℓgap. This
affectsRℓ and, thus, the abbreviationsN , R1, R2, R3 and
cF . Then we have to substitute the currentsi1, i2, andi3
with the corresponding currentsi4, i5, andi6. Furthermore,
the different mounting angle and position of the bearing
half affects the direction of the axial force, which acts
in positivex-direction and is, therefore, denoted byFx,+.
Finally, the expressions for the torquesMy andMz must
be interchanged (nowMz ≡ 0).

With the resulting axial force

Fx = Fx,+ − Fx,−

we now have a set of equations which describe the position
dependent current-force/torque-relation of the completeax-
ial bearing. The magnetic coupling of the two halves can
be neglected due to the design of the bearing disc.

In order to calculate the currents required for generating
forces and torques we have to determine the axial forces
for both halves. If we introduceF0 as a positive bias force
andFx,d as a desired axial force, we obtain

Fx,+,d =

{
Fx,d + FM

x,− + F0 if Fx,d ≥ FM
x

FM
x,+ + F0 if Fx,d < FM

x

Fx,−,d =

{
FM

x,− + F0 if Fx,d ≥ FM
x

−Fx,d + FM
x,+ + F0 if Fx,d < FM

x

where

FM
x = FM

x,+ − FM
x,−

is the resulting force produced when generating the desired
torquesMy,d andMz,d.

F. Position control with one axial and one radial magnetic
bearing

As discussed in [4], the controller has a cascade struc-
ture. The inner controller is the current controller. In the
case of the axial bearing current control is done by the
controller of the DC-voltage link converter. The outer
controller is a flatness-based position tracking controller,
which generates control forces and torques. The control
currents can be calculated with the position dependent
current-force/torque-relation obtained above.

The position controller was designed using the position
and orientation of the rigid body as components of a flat
output. Thus, only the equations (1) for the rigid body
dynamics must be adapted, while all the other controller
equations remain unchanged.

III. E XPERIMENTATION

The models derived were validated using a bearing test-
bench conceived for this purpose. It allows us to freely
position the rotor in the air gap of the bearing. While
the position is fixed, an appropriate number of current-
pairs are generated and the resulting forces are measured.
Measurement data thus obtained can be used to validate the
mathematical models and to identify model parameters.

For the position control we used the experimentation set-
up with the modifications discussed in the previous section
(see Fig. 3). The algorithms for the position control were
implemented on a dSPACE DS1103 controller board. For
the radial bearing a power amplifier with duty ratio inputs
was used and for the axial bearing we used two DC-voltage
link converters with current control.

A. Experimental identification of the current-force/torque-
relation

The position dependent current-force/torque-relation for
the axial bearing was measured for different electrical
connections. One experimental result with the Y-connection
given in Fig. 2 is reported on Fig. 4. The mathematical
model with the identified parameters is shown in this
figure, too. One may observe a good fitting of model and
experimentation data.

Comparing the calculated with the measured iso-lines
one may see that the assumption of linear magnetic be-
havior holds in a limited area. For high currents saturation
of forces and torques occurs. Thus, the linear model is not
valid at high currents. This is especially true for the torques.

B. Results of the position control experiments

Experimentation was done at standstill, because the
expected unbalance of the modified rotor would not allow
rotations at higher speed. However, it is possible to simulate
a rotation, i.e., instead of measuring the angleϕ it is
computed for a given speed.

We considered an elliptic path with major axisry =
20µm and minor axisrz = 10µm. The shaft central axis
follows the path periodically 2000 times a minute (as would
be required in a synchronized motion at 2000 rpm). We
used a flatness-based control for the position of the center
of mass and the orientation of the rotor as discussed in [4].
Fig. 5 shows the control force and torques. In Fig. 6 the
corresponding control currents of both axial bearing halves
are given. The desired and measured positions in the two
measurement planes are reported in Fig. 7.

IV. CONCLUSION

A new axial bearing which is capable of generating
forces and torques was introduced. The prototype used
for the measurements demonstrates the feasibility of a
magnetically levitated shaft with one radial and one axial
bearing in Y-connection. If a shorter rotor is used, one can
fully benefit of the advantages of the new axial bearing,
which renders a more compact design possible.
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